Competitive sport after SARS-CoV-2 infection in children

Italian Journal of Pediatrics - Tập 47 - Trang 1-5 - 2021
Giulia Cafiero1, Flaminia Passi1, Francesca Ippolita Calo’ Carducci2, Federica Gentili1, Ugo Giordano1, Chiara Perri1, Melania Hashem Said1, Attililo Turchetta1
1Department of Cardiac Surgery, Cardiology and Heart Lung Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
2Academic Pediatric Department, Immunological and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Tóm tắt

With the gradual resumption of sports activities after the lock-down period for coronavirus pandemic, a new problem is emerging: Allow all athletes to be able to return to compete after SARS-CoV-2 infection in total safety. Several protocols have been proposed for healed athletes but all of them have been formulated for the adult population. The aim of the present study is to evaluate the adequacy of Italian practical recommendations for return-to-paly, in order to exclude cardiorespiratory complications due to COVID-19 in children and adolescents. Between April 2020 and January 2021 the Italian Sports Medical Federation formulated cardiorespiratory protocols to be applied to athletes recovered from SARS-CoV-2 infection. The protocols take into account the severity of the infection. Protocols include lung function tests, cardiopulmonary exercise test, echocardiographic evaluation, blood chemistry tests. From September 2020 to February 2021, 45 children and adolescents (aged from 9 to 18 years; male = 26) with previous SARS-CoV-2 infection were evaluated according to the protocols in force for adult. 55.5% of the subjects (N = 25) reported an asymptomatic infection; 44.5% reported a mild symptomatic infection. Results of lung function test have exceeded the limit of 80% of the theoretical value in all patients. The cardiorespiratory capacity of all patients was within normal limits (average value of maximal oxigen uptake 41 ml/kg/min). No arrhythmic events or reduction in the ejection fraction were highlighted. The data obtained showed that, in the pediatric population, mild coronavirus infection does not cause cardiorespiratory complications in the short and medium term. Return to play after Coronavirus infection seems to be safe but it will be necessary to continue with the data analysis in order to modulate and optimize the protocols especially in the pediatric field.

Tài liệu tham khảo

https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_16-giugno-2020.pdf https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_27-gennaio-2021.pdf Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr Actions. 2020 Jun;109(6):1088–95. https://doi.org/10.1111/apa.15270 Epub 2020 Apr 14. Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? [published online ahead of print, 2020 Mar 24]. JAMA. 2020;https://doi.org/10.1001/jama.2020.4812. Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, et al. The variety of cardiovascular presentations of COVID-19. Circulation. 2020;141(23):1930. Epub 2020 Apr 3–6. https://doi.org/10.1161/CIRCULATIONAHA.120.047164. Baggish A, Drezner JA, Kim J, Martinez M, Prutkin JM. Resur¬gence of sport in the wake of COVID-19: cardiac considerations in competitive athletes [published online ahead of print, 2020 Jun 19]. Br J Sports Med. 2020;bjsports-2020-102516. Decree of the Ministry of Health, February 18, 1982: Regulations for the health protection of competitive sporting activities (Publication in the Official Gazette, March 5, 1982, n. 63). Casasco M., Galli M., Memo M., Pecorelli S., Pigozzi F., Signorelli C., Villani A. FMSI protocols for the resumption of sports activity in athletes. Italian Sports Medicine Federation, 30 Apr.2020. Eligibility for competitive sports activity in non-professional Covid-19 positive healed athletes and in athletes with symptoms suggestive of Covid-19 in the absence of SARS-CoV-2 diagnosis. 0001269–13/01/2021-DGPRE-MDS-P. https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr. 2004;17(3):212–21. https://doi.org/10.1016/j.echo.2003.12.005. T. Takken, B. C. Bongers, M. Van Brussel, and E. H. J. Hulzebos, Pediatric norms for cadiopulmonary exercise testing - in relation to sex and age. 2014. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95 yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43. https://doi.org/10.1183/09031936.00080312. Bignamini E, Cazzato S, Cutrera R, Ferrante G, La Grutta S, Licari A, et al. Italian pediatric respiratory society recommendations on pediatric pulmonary function testing during COVID-19 pandemic. Ital J Pediatr. 2020 May 24;46(1):68. https://doi.org/10.1186/s13052-020-00829-0. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4. https://doi.org/10.1038/nature02145. Ludvigsson JF. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021 Mar.;110(3):914–21. https://doi.org/10.1111/apa.15673. Al-Sadeq DW, Nasrallah GK. The incidence of the novel coronavirus SARS-CoV-2 among asymptomatic patients: a systematic review. Int J Infect Dis Actions. 2020 Sep;98:372–80. https://doi.org/10.1016/j.ijid.2020.06.098.