Compartmentalization of prokaryotic DNA replication
Tài liệu tham khảo
10.1101/SQB.1963.028.01.048
Nordström K. (2003) The replicon theory 40 years: an EMBO workshop held in Villefranche sur Mer, France, January 18–23, 2003. Plasmid 49, 269–280.
10.1146/annurev.mi.27.100173.001401
Liebowitz P.J. Schaechter M. (1975) The attachment of the bacterial chromosome to the cell membrane. Int. Rev. Cytol. 41, 1–28.
10.1146/annurev.mi.43.100189.000513
10.1046/j.1365-2958.1997.2061569.x
Sueoka N. (1998) Cell membrane and chromosome replication in Bacillus subtilis . Prog. Nucl. Acid Res. Mol. Biol. 59, 35–53.
Crooke E. (2001) Escherichia coli DnaA protein–phospholipid interactions: in vitro and in vivo. Biochimie 83, 19–23.
10.1016/0092-8674(88)90186-9
10.1016/0092-8674(90)90508-C
Herrick J. Kern R. Guha S. Landoulsi A. Fayet O. Malki A. Kohiyama M. (1994) Parental strand recognition of the DNA replication origin by the outer membrane in Escherichia coli . EMBO J. 13, 4695–4703.
10.1016/0092-8674(95)90272-4
10.1046/j.1365-2958.1996.00106.x
10.1073/pnas.95.19.11117
D'Alencon E. Taghbalout A. Kern R. Kohiyama M. (1999) Replication cycle dependent association of SeqA to the outer membrane fraction of E. coli . Biochimie 81, 841–846.
Losick R. Shapiro L. (1999) Changing views on the nature of the bacterial cell: from biochemistry to cytology. J. Bacteriol. 181, 4143–4145.
10.1016/S0962-8924(00)01840-7
Phillips G.J. (2001) Green fluorescent protein: a bright idea for the study of bacterial protein localization. FEMS Microbiol. Lett. 204, 9–18.
10.1126/science.282.5393.1516
10.1046/j.1365-2958.2000.01928.x
10.1146/annurev.genet.34.1.21
10.1146/annurev.micro.54.1.681
10.1146/annurev.micro.56.012302.160729
10.1016/j.mib.2003.10.015
10.1016/S1369-5274(02)00370-3
Skarstad K. Boye E. Steen H.B. (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J. 5, 1711–1717.
10.1093/embo-reports/kvd116
10.1111/j.1574-6976.2002.tb00620.x
10.1016/0092-8674(89)90802-7
10.1016/0092-8674(87)90221-2
Yung B.Y. Crooke E. Kornberg A. (1990) Fate of the DnaA initiator protein in replication at the origin of the Escherichia coli chromosome in vitro. J. Biol. Chem. 265, 1282–1285.
10.1093/emboj/18.23.6642
10.1074/jbc.M108303200
Sekimizu K. Yung B.Y. Kornberg A. (1988) The DnaA protein of Escherichia coli. Abundance, improved purification, and membrane binding. J. Biol. Chem. 263, 7136–7140.
Sekimizu K. Kornberg A. (1988) Cardiolipin activation of DnaA protein, the initiation protein of replication in Escherichia coli . J. Biol. Chem. 263, 7131–7135.
Crooke E. Castuma C.E. Kornberg A. (1992) The chromosome origin of Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J. Biol. Chem. 267, 16779–16782.
10.1073/pnas.85.19.7202
Castuma C.E. Crooke E. Kornberg A. (1993) Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli . J. Biol. Chem. 268, 24665–24668.
10.1074/jbc.273.9.5167
Garner J. Crooke E. (1996) Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J. 15, 3477–3485.
10.1074/jbc.275.6.4513
10.1074/jbc.M009643200
10.1128/JB.182.9.2604-2610.2000
Hwang D.S. Crooke E. Kornberg A. (1990) Aggregated DnaA protein is dissociated and activated for DNA replication by phospholipase or DnaK protein. J. Biol. Chem. 265, 19244–19248.
10.1016/0022-2836(73)90416-6
10.1073/pnas.92.3.783
10.1093/emboj/20.5.1164
10.1128/JB.182.2.371-376.2000
10.1007/s004380050019
10.1046/j.1365-2958.2002.03161.x
10.1016/0092-8674(90)90271-F
10.1016/0092-8674(87)90173-5
10.1093/emboj/19.22.6240
Boye E. (1991) The hemimethylated replication origin of Escherichia coli can be initiated in vitro. J. Bacteriol. 173, 4537–4539.
10.1016/0092-8674(94)90156-2
10.1093/emboj/cdg020
10.1073/pnas.93.22.12206
10.1093/emboj/18.8.2304
10.1046/j.1365-2958.2000.01943.x
10.1074/jbc.274.17.11463
10.1093/emboj/17.14.4158
10.1093/emboj/18.17.4882
10.1046/j.1365-2443.2000.00380.x
10.1111/j.1574-6968.1997.tb10192.x
10.1046/j.1365-2958.1999.01156.x
10.1101/gad.12.7.1036
10.1016/S0092-8674(00)80377-3
10.1101/gad.14.2.212
10.1046/j.1365-2443.2000.00334.x
10.1016/S0300-9084(99)00217-5
10.1016/S0300-9084(99)00218-7
10.1046/j.1365-2958.2003.03640.x
10.1046/j.1365-2958.2002.02901.x
10.1093/emboj/cdg504
10.1016/j.cub.2003.08.043
10.1046/j.1365-2958.2003.03607.x
10.1016/S0959-440X(03)00027-7
10.1016/S1097-2765(00)80038-6
10.1046/j.1365-2958.1999.01313.x
10.1128/JB.184.3.867-870.2002
Withers H.L. Bernander R. (1998) Characterization of dnaC2 and dnaC28 mutants by flow cytometry. J. Bacteriol. 180, 1624–1631.
10.1111/j.1365-2958.2004.04097.x
10.1006/jmbi.1993.1134
10.1074/jbc.271.12.7072
Kornacki J.A. Firshein W. (1986) Replication of plasmid RK2 in vitro by a DNA–membrane complex: evidence for initiation of replication and its coupling to transcription and translation. J. Bacteriol. 167, 319–326.
10.1016/0147-619X(89)90046-2
10.1006/plas.1994.1040
Mei J. Benashski S. Firshein W. (1995) Interactions of the origin of replication (oriV) and initiation proteins (TrfA) of plasmid RK2 with submembrane domains of Escherichia coli . J. Bacteriol. 177, 6766–6772.
10.1128/JB.182.6.1757-1760.2000
10.1128/JB.182.16.4380-4383.2000
10.1006/plas.2000.1467
10.1016/S0092-8674(00)80359-1
10.1128/JB.184.11.3142-3145.2002
10.1046/j.1365-2958.1999.01611.x
10.1093/emboj/18.14.4076
10.1093/emboj/cdf320
10.1093/emboj/cdf672
10.1016/S1097-2765(03)00451-9
10.1073/pnas.081075798
10.1093/emboj/21.7.1864
10.1006/plas.1999.1457
10.1111/j.1365-2958.1992.tb01997.x
10.1126/science.8197460
Yoshikawa, H., Wake, R.G. (1993) Initiation and termination of chromosome replication. In: Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (Sonenshein, A.L., Hoch, J.A., Losick, R., Eds.), pp.507–528 American Society for Microbiology, Washington, DC.
10.1006/plas.1998.1381
10.1016/S0092-8674(00)81909-1
10.1046/j.1365-2958.1998.00808.x
10.1099/00221287-138-1-1
Ireton K. Gunther N.W. IV Grossman A.D. (1994) Spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis . J. Bacteriol. 176, 5320–5329.
10.1111/j.1365-2958.1996.tb02559.x
10.1016/S0092-8674(00)81135-6
10.1073/pnas.94.9.4721
10.1101/gad.11.9.1160
10.1111/j.1365-2958.1997.mmi530.x
10.1046/j.1365-2958.1998.00857.x
10.1128/JB.185.4.1326-1337.2003
10.1016/j.cub.2003.10.024
10.1016/S0092-8674(01)00287-2
10.1016/S1534-5807(02)00403-3
10.1016/S0092-8674(03)00421-5
10.1126/science.1072163
10.1093/emboj/cdf393
10.1126/science.1079914
10.1101/gad.197501
10.1046/j.1365-2958.2003.03643.x
10.1016/S1097-2765(00)00130-1
10.1101/gad.913301
10.1046/j.1365-2958.2001.02350.x
10.1126/science.1066351
10.1016/S1097-2765(03)00130-8
10.1073/pnas.122040799
10.1126/science.8456299
10.1046/j.1365-2958.2000.01676.x
10.1073/pnas.77.5.2834
10.1073/pnas.84.3.653
10.1016/0022-2836(86)90395-5
Mosig G. Macdonald P. Powell D. Trupin M. Gary T. (1987) A membrane protein involved in initiation of DNA replication from the oriA region of phage T4. DNA replication and recombination. UCLA Symp. Mol. Cell. Biol. 47, 403–414.
10.1128/MMBR.65.2.261-287.2001
10.1006/viro.1995.1048
10.1016/0042-6822(86)90202-3
Barthelemy I. Mellado R.P. Salas M. (1989) In vitro transcription of bacteriophage φ29 DNA: inhibition of early promoters by the viral replication protein p6. J. Virol. 63, 460–462.
10.1074/jbc.M103738200
10.1016/S0378-1119(98)00167-X
10.1074/jbc.M210289200
10.1111/j.1365-2958.2004.03993.x
Salas M. (1998) Control mechanisms of bacteriophage φ29 DNA expression. Int. Microbiol. 1, 307–310.
10.1016/S0079-6603(08)60888-0
10.1093/nar/12.4.1943
Barthelemy I. Salas M. Mellado R.P. (1986) In vivo transcription of bacteriophage φ29 DNA: transcription initiation sites. J. Virol. 60, 874–879.
10.1093/emboj/19.20.5575
Barthelemy I. Salas M. Mellado R.P. (1987) In vivo transcription of bacteriophage φ29 DNA: transcription termination. J. Virol. 61, 1751–1755.
10.1146/annurev.bi.60.070191.000351
Salas, M., Rojo, F. (1993) Replication and transcription of bacteriophage φ29 DNA. In: Bacillus subtilis and other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (Sonenshein, A.L., Hoch, J.A., Losick, R., Eds.), pp.843–857 American Society for Microbiology, Washington, DC.
Salas, M., Miller, J.T., Leis, J., DePamphilis, M.L. (1996) Mechanisms for priming DNA synthesis. In: DNA Replication in Eukaryotic Cells (DePamphilis, M.L., Ed.), pp.131–176 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
10.1016/1047-8477(90)90059-L
10.1101/gad.13.19.2502
10.1093/emboj/20.21.6060
10.1093/emboj/cdf623
10.1016/j.jmb.2003.12.039
Salas, M. Mechanisms of initiation of linear DNA replication in prokaryotes Setlow, J.K., Ed., Genetic Engineering. Vol. 21, 1999. Kluwer Academic/Plenum Publishers, New York. 159–171
Inciarte M.R. Salas M. Sogo J.M. (1980) Structure of replicating DNA molecules of Bacillus subtilis bacteriophage φ29. J. Virol. 34, 187–199.
Sogo J.M. García J.A. Peñalva M.A. Salas M. (1982) Structure of protein-containing replicative intermediates of Bacillus subtilis phage φ29 DNA. Virology 116, 1–18.
10.1093/nar/14.12.4923
Serrano M. Gutiérrez J. Prieto I. Hermoso J.M. Salas M. (1989) Signals at the bacteriophage φ29 DNA replication origins required for protein p6 binding and activity. EMBO J. 8, 1879–1885.
10.1126/science.2111580
10.1006/jmbi.1993.1140
10.1074/jbc.271.48.31000
10.1073/pnas.81.17.5325
10.1073/pnas.77.11.6425
10.1093/nar/13.21.7715
10.1073/pnas.78.3.1446
10.1073/pnas.78.3.1336
10.1073/pnas.89.20.9579
10.1093/emboj/16.9.2519
10.1073/pnas.82.19.6404
Blanco L. Bernad A. Lázaro J.M. Martín G. Garmendia C. Salas M. (1989) Highly efficient DNA synthesis by the phage φ29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264, 8935–8940.
10.1093/nar/17.10.3663
10.1016/0042-6822(73)90330-9
McGuire J.C. Pène J.J. Barrow-Carraway J. (1974) Gene expression during the development of bacteriophage φ29. Analysis of viral-specific protein synthesis with suppressible mutants. J. Virol. 13, 690–698.
Mellado R.P. Moreno F. Viñuela E. Salas M. Reilly B.E. Anderson D.L. (1976) Genetic analysis of bacteriophage φ29 of Bacillus subtilis: integration and mapping of reference mutants of two collections. J. Virol. 19, 495–500.
10.1006/jmbi.1997.1032
Konings W.N. Bisschop A. Veenhuis M. Vermeulen C.A. (1973) New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure. J. Bacteriol. 116, 1456–1465.
10.1093/emboj/17.20.6096
Reilly B.E. Zeece V.M. Anderson D.L. (1973) Genetic study of suppressor-sensitive mutants of the Bacillus subtilis bacteriophage φ29. J. Virol. 11, 756–760.
10.1016/0378-1119(89)90067-X
10.1074/jbc.M306935200
Bordier C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607.
10.1016/0076-6879(94)28019-3
10.1074/jbc.M011296200
10.1073/pnas.93.1.519
10.1146/annurev.genet.33.1.423
10.1016/S0378-1119(99)00249-8
Younghusband H.B. Maundrell K. (1982) Adenovirus DNA is associated with the nuclear matrix of infected cells. J. Virol. 43, 705–713.
Bodnar J.W. Hanson P.I. Polvino-Bodnar M. Zempsky W. Ward D.C. (1989) The terminal regions of adenovirus and minute virus of mice DNAs are preferentially associated with the nuclear matrix in infected cells. J. Virol. 63, 4344–4353.
10.1101/gad.4.7.1197
Fredman J.N. Engler J.A. (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J. Virol. 67, 3384–3395.
10.1046/j.1365-2958.2001.02260.x
10.1093/emboj/19.15.4182
10.1074/jbc.M109312200
10.1093/emboj/cdg221
10.1016/S0955-0674(96)80011-1
10.1016/0092-8674(93)90235-I
10.1126/science.284.5421.1790
Verheijen R. Van Venrooij W. Ramaekers F. (1988) The nuclear matrix: structure and composition. J. Cell Sci. 90, 11–36.
Bridge E. Pettersson U. (1995) Nuclear organization of replication and gene expression in adenovirus-infected cells. Curr. Top. Microbiol. Immunol. 199, 99–117.
10.1126/science.280.5363.547
Pombo A. Ferreira J. Bridge E. Carmo-Fonseca M. (1994) Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 13, 5075–5085.
Angeletti P.C. Engler J.A. (1998) Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J. Virol. 72, 2896–2904.
10.1016/S0065-3527(08)60736-8
10.1093/emboj/16.13.4049
10.1093/emboj/18.11.3164
10.1074/jbc.M004865200
10.1073/pnas.170295097
10.1093/emboj/cdg034
10.1093/emboj/cdg033
10.1128/JVI.75.3.1252-1264.2001
10.1006/viro.2001.1229
10.1074/jbc.M103358200
10.1128/JVI.76.24.13088-13093.2002
10.1034/j.1600-0854.2001.20108.x
10.1128/JVI.74.19.8953-8965.2000
10.1128/JVI.75.20.9808-9818.2001
Egger D. Pasamontes L. Bolten R. Boyko V. Bienz K. (1996) Reversible dissociation of the poliovirus replication complex: functions and interactions of its components in viral RNA synthesis. J. Virol. 70, 8675–8683.
Lama J. Paul A.V. Harris K.S. Wimmer E. (1994) Properties of purified recombinant poliovirus protein 3AB as substrate for viral proteinases and as co-factor for RNA polymerase 3Dpol. J. Biol. Chem. 269, 66–70.
Hope D.A. Diamond S.E. Kirkegaard K. (1997) Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J. Virol. 71, 9490–9498.
10.1074/jbc.M112429200
10.1016/S0969-2126(97)00261-X
10.1126/science.1070585