Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachiaon host mtDNA evolution and diversity

Springer Science and Business Media LLC - Tập 11 - Trang 1-8 - 2011
Xiao-Jing Sun1,2, Jin-Hua Xiao1, James M Cook3, Gui Feng1,2, Da-Wei Huang1,4
1Key laboratory of Zoology Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
2Graduate School of the Chinese Academy of Sciences, Beijing, China
3School of Biological Sciences, University of Reading, Reading, Berkshire, UK
4College of Life Sciences, Hebei University, Baoding, China

Tóm tắt

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

Tài liệu tham khảo

Rasplus JY: The one-to-one species specificity of the Ficus-Agaoninae mutualism: how casual?. The Biodiversity of African Plants. Edited by: van der Maesen LJ, van der Burgt XM, van Medenbach de Rooy JM. 1996, Kluwer Academic Publishers, 639-649. Ware AB, Compton SG: Breakdown of pollinator specificity in an African fig tree. Biotropica. 1992, 24 (4): 544-549. 10.2307/2389018. Haine E, Martin J, Cook J: Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evol Biol. 2006, 6 (1): 83-10.1186/1471-2148-6-83. Michaloud G, Carriere S, Kobbi M: Exceptions to the one: one relationship between African fig trees and their fig wasp pollinators: Possible evolutionary scenarios. J Biogeogr. 1996, 23 (4): 513-520. 10.1111/j.1365-2699.1996.tb00013.x. Kerdelhue C, Le Clainche I, Rasplus JY: Molecular phylogeny of the Ceratosolen species pollinating Ficus of the subgenus Sycomorus sensu stricto: biogeographical history and origins of the species-specificity breakdown cases. Mol Phylogenet Evol. 1999, 11 (3): 401-414. 10.1006/mpev.1998.0590. Machado CA, Robbins N, Gilbert MTP, Herre EA: Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci USA. 2005, 102 (suppl_1): 6558-6565. 10.1073/pnas.0501840102. Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA: Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci USA. 2003, 100 (10): 5867-5872. 10.1073/pnas.0930903100. Compton SG: A collapse of host specificity in some African fig wasps. South Afr J Sci. 1990, 86 (1): 39-40. Peng YQ, Duan ZB, Yang DR, Rasplus JY: Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis. 2008, 45 (1-3): 9-14. Lopez-Vaamonde C, Dixon DJ, Cook JM, Rasplus JY: Revision of the Australian species of Pleistodontes (Hymenoptera: Agaonidae) fig-pollinating wasps and their host-plant associations. Zool J Linn Soc. 2002, 136 (4): 637-683. 10.1046/j.1096-3642.2002.00040.x. Cook JM, Rasplus JY: Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol. 2003, 18 (5): 241-248. 10.1016/S0169-5347(03)00062-4. Cook JM, Segar ST: Speciation in fig wasps. Ecol Entomol. 2010, 35: 54-66. 10.1111/j.1365-2311.2009.01148.x. Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rew Micro. 2008, 6 (10): 741-751. 10.1038/nrmicro1969. Werren JH: Wolbachia and speciation. Endless Species and Speciation. Edited by: Howard D, Berlocher S. 1997, New York: Oxford University Press Shoemaker DD, Katju V, Jaenike J: Wolbachia and the evolution of reproductive isolation between Drosophilla recens and Drosophila subquinaria. Evolution. 1999, 53 (4): 1157-1164. 10.2307/2640819. Bordenstein SR, O'Hara FP, Werren JH: Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature. 2001, 409 (6821): 707-710. 10.1038/35055543. Telschow A, Hammerstein P, Werren JH: The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evolution. 2005, 59 (8): 1607-1619. Telschow A, Flor M, Kobayashi Y, Hammerstein P, Werren JH: Wolbachia-Induced Unidirectional Cytoplasmic Incompatibility and Speciation: Mainland-Island Model. PLoS ONE. 2007, 2 (8): e701-10.1371/journal.pone.0000701. Haine ER, Cook JM: Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Pro R Sco B. 2005, 272 (1561): 421-429. 10.1098/rspb.2004.2956. Shoemaker DD, Machado CA, Molbo D, Werren JH, Windsor DM, Herre EA: The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Pro R Soc Lond B. 2002, 269 (1506): 2257-2267. 10.1098/rspb.2002.2100. Chen LL, Cook JM, Xiao H, Hu HY, Niu LM, Huang DW: High incidences and similar patterns of Wolbachia infection in fig wasp communities from three different continents. Insect Science. 2010, 17 (2): 101-111. 10.1111/j.1744-7917.2009.01291.x. Baudry E, Bartos J, Emerson K, Whitworth T, Werren JH: Wolbachia and genetic variability in the birdnest blowfly Protocalliphora sialia. Mol Eco. 2003, 12 (7): 1843-1854. 10.1046/j.1365-294X.2003.01855.x. Kambhampati S, Rai KS, Verleye DM: Frequencies of mitochondrial DNA haplotypes in laboratory cage populations of the mosquito, Aedes albopictus. Genetics. 1992, 132 (1): 205-209. Ballard JW, Hatzidakis J, Karr TL, Kreitman M: Reduced variation in Drosophila simulans mitochondrial DNA. Genetics. 1996, 144 (4): 1519-1528. Rasgon J, Cornel A, Scott T: Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Pro R Sco B. 2006, 273 (1594): 1603-1611. 10.1098/rspb.2006.3493. Shoemaker DD, Dyer KA, Ahrens M, McAbee K, Jaenike J: Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics. 2004, 168 (4): 2049-2058. 10.1534/genetics.104.030890. Jiggins FM: Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003, 164 (1): 5-12. Hurst GD, Jiggins FM: Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Pro R Sco B. 2005, 272 (1572): 1525-1534. 10.1098/rspb.2005.3056. Whitworth TL, Dawson RD, Magalon H, Baudry E: DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Pro R Sco B. 2007, 274 (1619): 1731-1739. 10.1098/rspb.2007.0062. Wiebes JT: The Indo-Australian Agaoninae (pollinators of figs). 1994, Amsterdam; New York: North-Holland, 92: Bouček Z: Australasian Chalcidoidea (Hymenoptera): A Biosystematic Revision of Genera and Fourteen Families, with a Reclassification of Species. Family Agaonidae. 1988, CAB, International, Wallingford, UK, 156-209. Hebert PD, Ratnasingham S, deWaard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Lond B. 2003, 270 (Suppl 1): S96-99. 10.1098/rsbl.2003.0025. Li YW, Zhou X, Feng G, Hu HY, NIu LM, Hebert PDN, Huang DW: COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Mol Ecol Resour. 2010, 10 (1): 31-40. 10.1111/j.1755-0998.2009.02671.x. Brower AV: Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA. 1994, 91 (14): 6491-6495. 10.1073/pnas.91.14.6491. Viljakainen L, Reuter M, Pamilo P: Wolbachia transmission dynamics in Formica wood ants. BMC Evol Biol. 2008, 8 (1): 55-10.1186/1471-2148-8-55. Tajima F: The effect of change in population size on DNA polymorphism. Genetics. 1989, 123 (3): 597-601. Aris-Brosou S, Excoffier L: The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol. 1996, 13 (3): 494-504. Seger J, Smith WA, Perry JJ, Hunn J, Kaliszewska ZA, Sala LL, Pozzi L, Rowntree VJ, Adler FR: Gene genealogies strongly distorted by weakly interfering mutations in constant environments. Genetics. 2010, 184 (2): 529-545. 10.1534/genetics.109.103556. Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Bio Evol. 1992, 9 (3): 552-569. Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O'Neill SL: Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol. 1999, 29 (2): 153-10.1016/S0965-1748(98)00119-2. Jeyaprakash A, Hoy MA: Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 2000, 9 (4): 393-405. 10.1046/j.1365-2583.2000.00203.x. O'Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM: 16S rRNA Phylogenetic Analysis of the Bacterial Endosymbionts Associated with Cytoplasmic Incompatibility in Insects. Proc Natl Acad Sci USA. 1992, 89 (7): 2699-2702. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech. 1994, 3 (5): 294-299. Hebert PD, Cywinska A, Ball SL, deWaard JR: Biological identifications through DNA barcodes. Pro R Soc Lond B. 2003, 270 (1512): 313-321. 10.1098/rspb.2002.2218. White T, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal genes for phylogenies. PCR Protocols: A Guide to Methods and Applications. 1990, San Diego, Academic Press, 315-322. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25 (11): 1451-1452. 10.1093/bioinformatics/btp187. Simonsen KL, Churchill GA, Aquadro CF: Properties of Statistical Tests of Neutrality for DNA Polymorphism Data. Genetics. 1995, 141 (1): 413-429.