Comparisons and physics basis of tokamak transport models and turbulence simulations

Physics of Plasmas - Tập 7 Số 3 - Trang 969-983 - 2000
A. M. Dimits1, G. Bateman2, M Beer3, B. I. Cohen1, W. Dorland4, G. W. Hammett3, Chel-Woon Kim5, J. E. Kinsey2, M. Kotschenreuther6, A.H. Kritz2, L. L. Lao7, J. Mandrekas8, W. M. Nevins1, Scott Parker5, A. J. Redd9, D.E. Shumaker1, R. D. Sydora10, J. Weiland11
11Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550
22Lehigh University, Bethlehem, Pennsylvania 18015
33Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540
44University of Maryland, College Park, Maryland 20742
55University of Colorado, Boulder, Colorado 80309
66Institute for Fusion Studies, Univ. of Texas, Austin, Texas 78712
77General Atomics, Inc., San Diego, California 92186-5608
88Georgia Institute of Technology, Atlanta, Georgia 30332-0225
99University of Washington, Seattle, Washington 98195
1010University of Alberta, Edmonton, Alberta, AB T6G2J1 Canada
1111Chalmers University of Technology, S-412 96 Goteborg, Sweden

Tóm tắt

The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient (ITG) instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transport models, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed.

Từ khóa


Tài liệu tham khảo

See EPAPS Document No. E-PHPAEN-7-037003for M. Kotschenreuther and W. Dorland, “Memorandum on Confinement Projections To: FESAC ITER Confinement reviewers,” (Feb. 14, 1997). This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.

1998, Phys. Plasmas, 5, 2355, 10.1063/1.872909

1997, Phys. Plasmas, 4, 2482, 10.1063/1.872228

1995, Phys. Plasmas, 2, 2381, 10.1063/1.871261

1995, Phys. Scr., 51, 591

1996, Phys. Plasmas, 3, 4046, 10.1063/1.871538

1996, Phys. Rev. Lett., 77, 71, 10.1103/PhysRevLett.77.71

1995, Phys. Scr., 52, 474, 10.1088/0031-8949/52/4/021

1995, Comput. Phys. Commun., 88, 128, 10.1016/0010-4655(95)00035-E

1982, Phys. Fluids, 25, 502, 10.1063/1.863762

1997, Nucl. Fusion, 37, 1215, 10.1088/0029-5515/37/9/I03

1995, Comput. Phys. Commun., 87, 1, 10.1016/0010-4655(94)00166-Y

1994, Phys. Plasmas, 1, 1461, 10.1063/1.870696

1994, Phys. Plasmas, 1, 2229, 10.1063/1.870934

1995, Phys. Plasmas, 2, 2687, 10.1063/1.871232

1989, Nucl. Fusion, 29, 1810, 10.1088/0029-5515/29/10/015

1992, Nucl. Fusion, 32, 151, 10.1088/0029-5515/32/1/I13

1993, Phys. Fluids B, 5, 3712, 10.1063/1.860842

1998, Phys. Plasmas, 5, 1793, 10.1063/1.872848

1996, Phys. Plasmas, 3, 561, 10.1063/1.871883

1999, Nucl. Fusion, 39, 539, 10.1088/0029-5515/39/4/310

1998, Phys. Rev. Lett., 81, 2454, 10.1103/PhysRevLett.81.2454

1996, Phys. Plasmas, 3, 1898, 10.1063/1.871985

1998, Phys. Plasmas, 5, 2836, 10.1063/1.873003

1993, Phys. Fluids B, 5, 77, 10.1063/1.860870

1983, Phys. Fluids, 26, 556, 10.1063/1.864140

1987, J. Comput. Phys., 72, 243, 10.1016/0021-9991(87)90080-5

1993, Phys. Fluids B, 5, 2967, 10.1063/1.860683

1993, Plasma Phys. Controlled Fusion, 35, 973, 10.1088/0741-3335/35/8/006

1993, Phys. Rev. E, 48, 4070, 10.1103/PhysRevE.48.4070

1998, Science, 281, 1835, 10.1126/science.281.5384.1835

1993, Phys. Fluids B, 5, 752, 10.1063/1.860930

1988, Phys. Fluids, 31, 2670, 10.1063/1.866544

1996, Plasma Phys. Controlled Fusion, 38, A281, 10.1088/0741-3335/38/12A/021

1999, Phys. Plasmas, 6, 1709, 10.1063/1.873429

1995, Phys. Plasmas, 2, 1217, 10.1063/1.871482

1995, Phys. Plasmas, 2, 2231, 10.1063/1.871246

1998, Phys. Rev. Lett., 80, 724, 10.1103/PhysRevLett.80.724

1997, Phys. Plasmas, 4, 1792, 10.1063/1.872279

1999, Phys. Plasmas, 6, 1162, 10.1063/1.873360

1992, Phys. Fluids B, 4, 3138, 10.1063/1.860422

1996, Phys. Plasmas, 3, 4046, 10.1063/1.871538

1992, Phys. Fluids B, 4, 1167, 10.1063/1.860125

1997, Phys. Rev. Lett., 79, 3419, 10.1103/PhysRevLett.79.3419

1998, Bull. Am. Phys. Soc., 43, 1721

1995, Phys. Plasmas, 2, 1648, 10.1063/1.871313

1997, Phys. Plasmas, 4, 1499, 10.1063/1.872367

1998, Plasma Phys. Controlled Fusion, 40, 581, 10.1088/0741-3335/40/5/006

1999, Phys. Plasmas, 6, 922, 10.1063/1.873331

1998, Plasma Phys. Controlled Fusion, 40, 1073, 10.1088/0741-3335/40/6/013

1999, Phys. Rev. Lett., 83, 3645, 10.1103/PhysRevLett.83.3645