So sánh ba kỹ thuật quét 3D cho tranh, áp dụng cho tác phẩm ‘Cô gái với bông tai ngọc trai’ của Vermeer
Tóm tắt
Hội họa trên vải do thế kỷ XVII thường gồm lớp véc ni và lớp sơn (trong suốt) trên một nền vật liệu. Cảm nhận của người xem về một tác phẩm nghệ thuật có thể bị ảnh hưởng bởi sự thay đổi và tổn hại của các lớp này. Sự hình thành nứt trong cấu trúc đa lớp của bức tranh có thể thấy được qua bề mặt. Hơn nữa, tác động của việc mài mòn cơ học, các quá trình (quang) hóa học và các phương pháp điều trị có thể ảnh hưởng đến hình thái bề mặt và do đó là diện mạo của nó. Các tiến bộ công nghệ mới trong việc chụp ảnh không xâm lấn cho phép tài liệu hóa và hình dung hình dạng 3D của một bức tranh trên các đoạn lớn hơn hoặc thậm chí toàn bộ bề mặt. Trong bài viết này, chúng tôi so sánh ba kỹ thuật quét 3D đã được sử dụng để ghi lại bề mặt của
Từ khóa
Tài liệu tham khảo
Hermans J, Osmond G, Van Loon A, Iedema P, Chapman R, Drennan J, Jack K, Rasch R, Morgan G, Zhang Z, Monteiro M, Keune K. Electron microscopy imaging of zinc soaps nucleation in oil paint. Microsc Microanal. 2018;24:318–22. https://doi.org/10.1017/S1431927618000387 .
van Asperen de Boer JRJ. An introduction to the scientific examination of paintings. In: Nederlands Kunsthistorisch Jaarboek (NKJ) / Netherlands Yearbook for History of Art, vol. 26. 1975. p. 1–40.
Legrand S, Vanmeert F, Van der Snickt G, Alfeld M, De Nolf W, Dik J, Janssens K. Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Herit Sci. 2014;2(13):1–11. https://doi.org/10.1186/2050-7445-2-13 .
Wadum J. The Girl with a Pearl Earring—restoration history. In: Vermeer Illuminated: a report on the restoration of the view of Delft and The Girl with a Pearl Earring by Johannes Vermeer. Mannady: VK Publishing/Inmerc; 1995. pp. 18–21. Chap. 3.1.
Bucklow S. The description and classification of craquelure. Stud Conserv. 1999;44(4):233–44. https://doi.org/10.2307/1506653 .
Bucklow S. Cracks and the perception of paintings. https://www.hki.fitzmuseum.cam.ac.uk/projects/cracks . Accessed 15 May 2019.
El-Youssef M, Bucklow S, Maev R. The development of a diagnostic method for geographical and condition-based analysis of artworks using craquelure pattern recognition techniques. Insight Non-Destructive Testing Condition Monit. 2014;56(3):124–30. https://doi.org/10.1784/insi.2014.56.3.124 .
Spagnolo SG. Virtual restoration: detection and removal of craquelure in digitized image of old paintings. In: Optics for arts, architecture, and archaeology III. Munich: SPIE Optical; 2011. p. 1–9. https://doi.org/10.1117/12.888299 .
Blais F, Taylor J, Cournoyer L, Picard M, Borgeat L, Dicaire L-G, Rioux M, Beraldin J-A, Godin G, Lahnanier C, Aitken, G. Ultra-high resolution imaging at 50 micron using a Portable XYZ-RGB Color Laser Scanner. In: Baltsavias M, Gruen A, van Gool L, Pateraki M, editors. International workshop on recording, modeling and visualization of cultural heritage. Ascona: CRC Press; 2005. p. 1–16. https://nrc-publications.canada.ca/eng/view/accepted/?id=3a76edd0-57ca-47ef-8c89-c2278bd1d73e .
Blais F, Taylor J, Cournoyer L, Picard M, Borgeat L, Godin G, Beraldin J-A, Rioux M, Lahanier C. Ultra high-resolution 3D laser color imaging of paintings: the ’Mona Lisa’ by Leonardo da Vinci. In: Castillejo M, Moreno P, Oujja M, Radvan R, Ruiz J, editors. 7th international conference on lasers in the conservation of artworks. Madrid: CRC Press; 2007. p. 1–8. https://nrc-publications.canada.ca/eng/view/accepted/?id=8f3c5c14-2ab8-47c4-865c-e1c76d35effd .
Verus Art: Verus Art textured reproductions (2017). www.verusart.com . Accessed 15 May 2019.
Jackson MK, MacDonald LW. Color management in 3D fine-art painting reproduction. In: Color and imaging conference. Vancouver: Society for Imaging Science and Technology; 2018. p. 396–401. https://doi.org/10.2352/ISSN.2169-2629.2018.26.396 .
Factum Arte: Lucida: discovering an artwork through its surface. Technical report, Factum Foundation, Madrid, Spain, 2016. http://www.factum-arte.com .
Zalewski D. The factory of fakes—how a workshop uses digital technology to craft perfect copies of threatened art. In: The New Yorker. 2016; p. 66–79.
Van Gogh Museum. Van Gogh museum—Relievo collection. https://www.vangoghmuseum.nl/en/business/relievo-collection . Accessed 13 Oct 2017.
Akca D, Grun A, Breuckmann B, Lahanier C. High definition 3D-scanning of arts objects and paintings. In: Gruen A, Kahmen H, editors. Optical 3-D measurement techniques VIII, vol. II. Zurich, Switzerland; 2007. p. 50–8.
Karaszewski M, Adamczyk M, Sitnik R, Michoński J, Załuski W, Bunsch E, Bolewicki P. Automated full-3D digitization system for documentation of paintings. In: Pezzati L, Targowski P, editors. Optics for arts, architecture, and archaeology IV, vol. 8790. Munich, Germany; 2013. p. 1–11. https://doi.org/10.1117/12.2020447 .
Breuckmann B. 3-dimensional digital fingerprint of paintings. In: 19th European signal processing conference. Barcelona: IEEE; 2011. p. 1249–53
Zaman T, Jonker P, Lenseigne B, Dik J. Simultaneous capture of the color and topography of paintings using fringe encoded stereo vision. Herit Sci. 2014;2(23):1–10. https://doi.org/10.1186/s40494-014-0023-0 .
Elkhuizen WS, Essers TTW, Song Y, Geraedts JMP, Pont SC, Dik J. Gloss, color and topography scanning for reproducing a painting’s appearance using 3D printing. J Comput Cultural Herit. 2019;12(4):1–19.
van Hengstum MJW, Essers TTW, Elkhuizen WS, Dodou D, Song Y, Geraedts JMP, Dik J. Development of a high resolution topography and color scanner to capture crack patterns of paintings. In: Sablatnig R, Wimmer M, editors. Eurographics workshop on graphics and cultural heritage. Vienna: The Eurographics Association; 2018. p. 1–10. https://doi.org/10.2312/gch.20181336 .
Cacciari I, Nieri P, Siano S. 3D digital microscopy for characterizing punchworks on medieval panel paintings. J Comput Cultural Herit. 2014;7(4):1–15. https://doi.org/10.1145/2594443 .
Van den Berg KJ, Daudin M, Joosten I, Wei B, Morrison R, Burnstock A. A comparison of light microscopy techniques with scanning electron microscopy for imaging the surface of cleaning of paintings. In: 9th international conference on NDT of Art, Jerusalem, Israel; 2008. p. 25–30
Del Sette F, Patané F, Rossi S, Torre M, Cappa P. Automated displacement measurements on historical canvases. Herit Sci. 2017;5(21):1–12. https://doi.org/10.1186/s40494-017-0135-4 .
Palma G, Pingi P, Siotto E, Bellucci R, Guidi G, Scopigno R. Deformation analysis of Leornado da Vinci’s “Adorazione dei Magi” through temporal unrelated 3D digitization. J Cultural Herit. 2019;38:1–12. https://doi.org/10.1016/j.culher.2018.11.001 .
Zaman T. Development of a topographic imaging device for the near-planer surfaces of paintings. Master thesis, Delft University of Technology, Delft, The Netherlands. 2013. http://resolver.tudelft.nl/uuid:bd71a192-eaa8-4f90-8778-b18f86cac79c . Accessed 29 Oct 2019.
Cheung CS, Spring M, Liang H. Ultra-high resolution Fourier domain optical coherence tomography for old master paintings. Opt Express. 2015;23(8):1–13. https://doi.org/10.1364/oe.23.010145 .
Wojtkowski M. High-speed optical coherence tomography: basics and applications. Appl Opt. 2010;49(16):1–32. https://doi.org/10.1364/ao.49.000d30 .
Targowski P, Rouba B, Wojtkowski M, Kowalczyk A. The Application of optical coherence tomography to non-destructive examination of museum objects. Stud Conserv. 2004;49(2):107–14. https://doi.org/10.1179/sic.2004.49.2.107 .
Liang H, Cucu R, Dobre GM, Jackson DA, Pedro J, Pannell C, Saunders D, Podoleanu AG. Application of OCT to examination of easel paintings. Second Eur Workshop Opt Fibre Sens. 2004;5502:378. https://doi.org/10.1117/12.566780 .
Yang ML, Lu CW, Hsu IJ, Yang CC. The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades. Archaeometry. 2004;46(2):171–82. https://doi.org/10.1111/j.1475-4754.2004.00151.x .
Targowski P, Iwanicka M. Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl Phys A. 2012;106:265–77. https://doi.org/10.1007/s00339-011-6687-3 .
Callewaert T, Dik J, Kalkman J. Segmentation of thin corrugated layers in high-resolution OCT images. Opt Express. 2017;25(26):1–13. https://doi.org/10.1364/OE.25.032816 .
Boon J, Van der Weerd J, Keune K, Noble P, Wadum J. Mechanical and chemical changes in Old Master paintings: dissolution, metal soap formation and remineralization processes in lead pigmented ground/intermediate paint layers of 17th century paintings. In: ICOM-CC, 13th Triennial Meeting, Rio de Janeiro, Brazil. 2002. p. 401–6.
Schmitt S. Examination of paintings treated by Pettenkofer’s process. Stud Conserv. 2014;35:81–4 Examination of paintings treated by Pettenkofer’s process.
National Instruments: LabVIEW. http://www.ni.com/nl-nl/shop/labview.html . Accessed 3 Jul 2019.
Bouguet J-Y. Camera calibration toolbox for Matlab. 2013. http://www.vision.caltech.edu/bouguetj/calib_doc/ . Accessed 29 Oct 2019.
Mitani Cooperation Visual System: e-tiling software. https://www.mitani-visual.jp/en/products/image_generation_observation_support/e_tiling/ . Accessed 3 Jul 2019.
SciPy for Python. https://www.scipy.org . Accessed 3 Jul 2019.
OpenCV. https://opencv.org . Accessed 3 Jul 2019.
Rubert & Co Ltd: Precision reference specimens. 2019. http://www.rubert.co.uk/reference-specimens/ . Accessed 2 May 2019.
Hoogstede L, Spronk R, Erdmann RG, Gotink RK, Ilsink M, Kolderweij J, Nap H, Veldhuizen D. Image Processing for the Bosch Research and Conservation Project. In: Hieronymus Bosch: Painter and Draughtsman—technical studies. Brussels: Mercatorfonds; 2016. p. 30–51. Chap. II.