Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents
Tóm tắt
The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the alkaline hydrolysis method. The free and bound phenolic contents and profiles and antioxidant activities of the extracts were found to be dependent on the extraction solvent used. Litchi exhibited good cellular antioxidant activity and could be a potentially useful natural source of antioxidants.
Tài liệu tham khảo
Arts ICW, Hollman PCH: Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005, 81 (1): 317S-325S.
Wolfe KL, Liu RH: Cellular Antioxidant Activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem. 2007, 55: 8896-8907. 10.1021/jf0715166.
Jiang YM, Duan XW, Joyce D, Zhang ZQ, Li JR: Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem. 2004, 88 (3): 443-446. 10.1016/j.foodchem.2004.02.004.
Prasad KN, Yang B, Yang SY, Chen YL, Zhao MM, Ashraf M, Jiang YM: Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 2009, 116 (1): 1-7. 10.1016/j.foodchem.2009.01.079.
Zhao MM, Yang B, Wang JS, Li BZ, Jiang YM: Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chem. 2006, 98 (3): 539-544. 10.1016/j.foodchem.2005.06.028.
Zhang ZQ, Pang XQ, Yang C, Ji ZL, Jiang YM: Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem. 2004, 84 (4): 601-604. 10.1016/j.foodchem.2003.05.002.
Perez-Jimenez J, Torres JL: Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agric Food Chem. 2011, 59: 12713-12724. 10.1021/jf203372w.
Bhoopat L, Srichairatanakool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T: Hepatoprotective effects of lychee (Litchi chinensis Sonn.): a combination of antioxidant and anti-apoptotic activities. J Ethnopharmacol. 2011, 136 (1): 55-66. 10.1016/j.jep.2011.03.061.
Saxena S, Hajare SN, More V, Kumar S, Wadhawan S, Mishra BB, Parte MN, Gautam S, Sharma A: Antioxidant and radioprotective properties of commercially grown litchi (Litchi chinensis) from India. Food Chem. 2011, 126 (1): 39-45. 10.1016/j.foodchem.2010.10.051.
Luximon-Ramma A, Bahorun T, Crozier A: Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J Sci Food Agric. 2003, 83 (5): 496-502. 10.1002/jsfa.1365.
Sun J, Chu YF, Wu X, Liu RH: Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem. 2002, 50 (25): 7449-7454. 10.1021/jf0207530.
Kajdzanoska M, Petreska J, Stefova M: Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J Agric Food Chem. 2011, 59: 5272-5278. 10.1021/jf2007826.
Ghasemzadeh A, Jaafar HZ, Rahmat A: Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. J Med Plants Res. 2011, 5: 1147-1154.
Bonoli M, Verardo V, Marconi E, Caboni MF: Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J Agric Food Chem. 2004, 52 (16): 5195-5200. 10.1021/jf040075c.
Naczk M, Shahidi F: The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 1989, 31: 159-164. 10.1016/0308-8146(89)90026-5.
Cuevas Montilla E, Hillebrand S, Antezana A, Winterhalter P: Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J Agric Food Chem. 2011, 59 (13): 7068-7074. 10.1021/jf201061x.
Madhujith T, Shahidi F: Antioxidant potential of barley as affected by alkaline hydrolysis and release of insoluble-bound phenolics. Food Chem. 2009, 117 (4): 615-620. 10.1016/j.foodchem.2009.04.055.
Liyana-Pathirana CM, Shahidi F: Importance of insoluble-bound phenolics to antioxidant properties of wheat. J Agric Food Chem. 2006, 54 (4): 1256-1264. 10.1021/jf052556h.
Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y, Tang X: Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem. 2013, 136 (3–4): 1169-1176.
Liu RH: Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004, 134 (12): 3479S-3485S.
Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE: Determination of Hydrolyzable Tannins (Gallotannins and Ellagitannins) after reaction with potassium iodate. J Agric Food Chem. 2002, 50: 1785-1790. 10.1021/jf0111155.
Dewanto V, Wu XZ, Adom KK, Liu RH: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002, 50: 3010-3014. 10.1021/jf0115589.
Julkunen-Tiitto R: Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 1985, 33 (2): 213-217. 10.1021/jf00062a013.
Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH: Cellular antioxidant activity of common fruits. J Agric Food Chem. 2008, 56: 8418-8426. 10.1021/jf801381y.
Liu S-C, Lin J-T, Wang C-K, Chen H-Y, Yang D-J: Antioxidant properties of various solvent extracts from lychee. Food Chem. 2009, 114: 577-581. 10.1016/j.foodchem.2008.09.088.
Weidner S, Rybarczyk A, Karamać M, Król A, Mostek A, Grębosz J, Amarowicz R: Differences in the phenolic composition and Antioxidant Properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules. 2013, 18 (3): 3410-3426. 10.3390/molecules18033410.
Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner K, Baldwin EA: Total antioxidant activity and fiber content of select Florida-grown tropical fruits. J Agric Food Chem. 2006, 54 (19): 7355-7363. 10.1021/jf060566s.
Arranz S, Saura-Calixto F, Shaha S, Kroon PA: High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agric Food Chem. 2009, 57 (16): 7298-7303. 10.1021/jf9016652.
Duan XW, Wu GF, Jiang YM: Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules. 2007, 12 (4): 759-771. 10.3390/12040759.
Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S: Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Exp Neurol. 1992, 115 (2): 292-296. 10.1016/0014-4886(92)90064-W.
Arranz S, Silván JM, Saura-Calixto F: Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Mol Nutr Food Res. 2010, 54 (11): 1646-1658. 10.1002/mnfr.200900580.
Wolfe KL, Liu RH: Structure - activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem. 2008, 56 (18): 8404-8841. 10.1021/jf8013074.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/14/9/prepub