Comparison of point-of-care peripheral perfusion assessment using pulse oximetry sensor with manual capillary refill time: clinical pilot study in the emergency department

Springer Science and Business Media LLC - Tập 7 - Trang 1-9 - 2019
Koichiro Shinozaki1,2, Lee S. Jacobson2, Kota Saeki3, Hideaki Hirahara4, Naoki Kobayashi4, Steve Weisner3, Julianne M. Falotico2, Timmy Li2, Junhwan Kim1, Lance B. Becker1,2
1The Feinstein Institute for Medical Research, Northwell Health, Manhasset, USA
2Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, USA
3Nihon Kohden Innovation Center, Cambridge, USA
4Nihon Kohden Corporation, Tokyo, Japan

Tóm tắt

Traditional capillary refill time (CRT) is a manual measurement that is commonly used by clinicians to identify deterioration in peripheral perfusion status. Our study compared a novel method of measuring peripheral perfusion using an investigational device with standardized visual CRT and tested the clinical usefulness of this investigational device, using an existing pulse oximetry sensor, in an emergency department (ED) setting. An ED attending physician quantitatively measured CRT using a chronometer (standardized visual CRT). The pulse oximetry sensor was attached to the same hand. Values obtained using the device are referred to as blood refill time (BRT). These techniques were compared in its numbers with the Bland-Altman plot and the predictability of patients’ admissions. Thirty ED patients were recruited. Mean CRT of ED patients was 1.9 ± 0.8 s, and there was a strong correlation with BRT (r = 0.723, p < 0.001). The Bland-Altman plot showed a proportional bias pattern. The ED physician identified 3 patients with abnormal CRT (> 3 s). Area under the receiver operator characteristic curve (AUC) of BRT to predict whether or not CRT was greater than 3 s was 0.82 (95% CI, 0.58–1.00). Intra-rater reliability of BRT was 0.88 (95% CI, 0.79–0.94) and that of CRT was 0.92 (0.85–0.96). Twelve patients were admitted to the hospital. AUC to predict patients’ admissions was 0.67 (95% CI, 0.46–0.87) by BRT and 0.76 (0.58–0.94) by CRT. BRT by a pulse oximetry sensor was an objective measurement as useful as the standardized CRT measured by the trained examiner with a chronometer at the bedside.

Tài liệu tham khảo

Hernandez G, Ospina-Tascon GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321:654–64. Lima A, Jansen TC, van Bommel J, et al. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med. 2009;37:934–8. van Genderen ME, Paauwe J, de Jonge J, et al. Clinical assessment of peripheral perfusion to predict postoperative complications after major abdominal surgery early: a prospective observational study in adults. Crit Care. 2014;18:R114. Gorelick MH, Shaw KN, Baker MD. Effect of ambient temperature on capillary refill in healthy children. Pediatrics. 1993;92:699–702. Pickard A, Karlen W, Ansermino JM. Capillary refill time: is it still a useful clinical sign? Anesth Analg. 2011;113:120–3. Alsma J, van Saase JLCM, Nanayakkara PWB, et al. The power of flash mob research: conducting a nationwide observational clinical study on capillary refill time in a single day. Chest. 2017;151:1106–13. Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med. 2005;31:1316–26. Jubran A. Pulse oximetry. Crit Care. 2015;19:272. Severinghaus JW, Honda Y. History of blood gas analysis. VII. Pulse oximetry. J Clin Monit. 1987;3:135–8. Shinozaki K, Capilupi MJ, Saeki K, et al. Blood refill time: clinical bedside monitoring of peripheral blood perfusion using pulse oximetry sensor and mechanical compression. Am J Emerg Med. 2018;36:2310–2. Shinozaki K, Capilupi MJ, Saeki K, et al. Low temperature increases capillary blood refill time following mechanical fingertip compression of healthy volunteers: prospective cohort study. J Clin Monit Comput. 2019;33:259–67. Lima A, van Genderen ME, Klijn E, et al. Peripheral vasoconstriction influences thenar oxygen saturation as measured by near-infrared spectroscopy. Intensive Care Med. 2012;38:606–11. Whitehead AL, Julious SA, Cooper CL, et al. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. 2016;25:1057–73. Browne RH. On the use of a pilot sample for sample size determination. Stat Med. 1995;14:1933–40. Hernandez G, Cavalcanti AB, Ospina-Tascon G, et al. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK-a randomized controlled trial. Ann Intensive Care. 2018;8:52. Shinozaki K, Jacobson LS, Saeki K, et al. Does training level affect the accuracy of visual assessment of capillary refill time? Crit Care. 2019;23:157. Kawaguchi R, Nakada TA, Oshima T, et al. Optimal pressing strength and time for capillary refilling time. Crit Care. 2019;23:4.