Comparison of nanostructure characteristics of ZnO grown on GaN and sapphire

Journal of Applied Physics - Tập 99 Số 5 - 2006
Wen-Yu Shiao1, Chun-Yung Chi1, Shu-Cheng Chin1, Chi‐Feng Huang1, Tsung-Yi Tang1, Yen-Cheng Lu1, Yu-Li Lin1, Hong Ming Lin1, Fang-Yi Jen1, C. C. Yang1, Baoping Zhang2, Yasutomo Segawa2
1National Taiwan University Graduate Institute of Electro-optical Engineering and Department of Electrical Engineering, , 1 Roosevelt Road, Section 4, Taipei, Taiwan, Republic of China
2The Institute of Physical and Chemical Research (RIKEN), Photodynamics Research Center, Sendai, Japan

Tóm tắt

The immature developments of p-type ZnO and ZnO-related ternary or quaternary compound and the small lattice mismatch between ZnO and GaN stimulate interest in the hybrid growth of ZnO and GaN. In this research, we compared the nanostructures and optical properties of two ZnO thin-film samples grown under the same conditions but on different underlying materials (sapphire and GaN). With the high growth temperature of 450°C, both samples show domain structures. However, in contrast to the sample of ZnO on sapphire, the sample of ZnO on GaN starts with smaller domains (a few tens of nanometers in width) of almost vertical boundaries at the interface and evolves into larger domains (around 100nm in width). The 30° twist of the basal plane in ZnO with respect to its underlying sapphire does not occur in the sample of ZnO on GaN. Within a domain of ZnO on sapphire, misfit and threading dislocations can be periodically observed along the interface with the separation of about 8nm. The transition of the lattice structure across the interface between ZnO and GaN was quite smooth, indicating the high heterojunction quality in this sample. The x-ray diffraction results showed that the crystalline quality of ZnO on GaN is slightly better than that of ZnO on sapphire. However, based on the thermal quenching behavior of integrated photoluminescence intensity, we estimated that the optical quality of the two samples is about the same.

Từ khóa


Tài liệu tham khảo

2003, J. Appl. Phys., 94, 5605, 10.1063/1.1615703

2003, Appl. Phys. Lett., 82, 1848, 10.1063/1.1561158

2000, Appl. Phys. Lett., 77, 537, 10.1063/1.127036

2003, Jpn. J. Appl. Phys., Part 2, 42, L1229, 10.1143/JJAP.42.L1229

2004, Appl. Phys. Lett., 84, 4098, 10.1063/1.1753061

2003, Appl. Phys. Lett., 82, 964, 10.1063/1.1544437

2004, J. Appl. Phys., 95, 3141, 10.1063/1.1646440

2003, Science, 300, 1249, 10.1126/science.1082542

2000, Mater. Sci. Eng., B, 77, 190, 10.1016/S0921-5107(00)00372-X

2002, Appl. Phys. Lett., 81, 1830, 10.1063/1.1504875

2003, Thin Solid Films, 433, 131, 10.1016/S0040-6090(03)00327-4

2002, Phys. Status Solidi A, 192, 166, 10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-G

2004, Thin Solid Films, 449, 12, 10.1016/S0040-6090(03)01466-4

2005, Appl. Phys. Lett., 86, 211918, 10.1063/1.1923194

2005, Appl. Phys. Lett., 86, 221910, 10.1063/1.1939078

2002, J. Appl. Phys., 91, 874, 10.1063/1.1426238

2005, Appl. Phys. Lett., 86, 151917, 10.1063/1.1895480

2003, Appl. Phys. Lett., 83, 1875, 10.1063/1.1605805

1998, Appl. Phys. Lett., 72, 2466, 10.1063/1.121384

1997, Appl. Phys. Lett., 70, 2230, 10.1063/1.118824

2005, Appl. Phys. Lett., 86, 211902, 10.1063/1.1935030

2005, Appl. Phys. Lett., 86, 172103, 10.1063/1.1906284

2004, Appl. Phys. Lett., 84, 5040, 10.1063/1.1763640

2004, Appl. Phys. Lett., 84, 3612, 10.1063/1.1738180

2003, Appl. Phys. Lett., 83, 2943, 10.1063/1.1615308

2004, J. Phys. Chem. B, 108, 10899, 10.1021/jp048602i

2002, Appl. Phys. Lett., 81, 4928, 10.1063/1.1531832

2004, Phys. Status Solidi C, 1, 864, 10.1002/pssc.200304144

2005, Appl. Phys. Lett., 87, 252117, 10.1063/1.2150277

2004, Appl. Phys. Lett., 84, 5422, 10.1063/1.1767603