Comparison of methylene blue sequestration potentials of unmodified and Fenton’s modified plantain (Musa paradisiaca) peels biomass
Tóm tắt
The utilization of unmodified and Fenton’s modifies plantain peels biomass in the removal of methylene blue from aqueous solution is here reported. Optimum modification for methylene blue sequestration was established by varying Fe2+/H2O2 ratio at different pH. Adsorbent’s characterization was performed by Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The effects of contact time, initial dye concentration, dosage and temperature on the sorption process were investigated in a batch adsorption process. Optimum modification was achieved at ratio 1:200 Fe2+/H2O2 and pH 5. Characterization suggested the binding sites to be mainly the –OH and C=O groups. Morphology probe revealed improved surface roughness and porosity after modification. Sorption of methylene blue onto the modified sample was higher and faster (reaching about 97% removal at equilibrium time of 30 min) than onto the unmodified sample in which 84% removal was observed after 3 h. With concentration increase from 0.031 to 1.563 mmol/L at 30 ℃, uptake by the modified variant was enhanced from 0.0244 to 0.5907 mmol/L. Dye uptake decreased with increasing temperature. The kinetics of the process was best described by the pseudo-second-order model, suggesting chemisorption and intraparticle diffusion as the probable rate-determining steps. Isotherm modeling showed good correlation with the Freundlich model, indicating heterogeneous and multilayered adsorption. Free energy values of about 7.0 kJ/mol and ΔH values of − 185.6 and − 542.422 kJ/mol for the unmodified and modified samples, respectively, suggested the involvement of both physical and chemical adsorption. In all, the modified variant presented itself as a better adsorbent.
Tài liệu tham khảo
Adigun, O. A., Oninla, V. O., & Babarinde, N. A. A. (2019). Application of sugarcane leaves as biomass in the removal of cadmium(II), lead(II) and zinc(II) ions from polluted water. International Journal of Energy and Water Resources, 3, 141–152. https://doi.org/10.1007/s42108-019-00024-w
Adigun, O. A., Oninla, V. O., Babarinde, N. A. A., Oyedotun, K. O., & Manyala, N. (2020). Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing Nickel(II), Chromium(III) and Cobalt(II) ions from polluted water. Surface Interfaces, 20, 100621. https://doi.org/10.1016/j.surfin.2020.100621
Aftab, B., Shin, H.-S., & Hur, J. (2018). Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARAFAC and 2D-COS-FTIR. Journal of Hazardous Materials, 354, 33–41. https://doi.org/10.1016/j.jhazmat.2018.04.059
Aktas, D., Dizge, N., Yatmaz, H. C., Caliskan, Y., Ozay, Y., & Caputcu, A. (2017). The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: Kinetic and thermodynamic studies. Water Science and Technology, 76, 3114–3125. https://doi.org/10.2166/wst.2017.468
Ali, I., Alharbi, O. M. L., Alothman, Z. A., & Badjah, A. Y. (2018). Kinetics, thermodynamics and modelling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. & Photobiol., 94, 935–941. https://doi.org/10.1111/php.12937
Ali, I., Babkin, A. V., Burakova, I. V., Burakov, A. E., Neskoromnaya, E. A., Tkachev, A. G., Panglisch, S., AlMasoud, N., & Alomar, T. S. (2021). Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. Journal of Molecular Liquids, 329, 115584. https://doi.org/10.1016/j.molliq.2021.115584
Ali, I., Khan, T. A., & Hussain, I. (2011). Treatment and remediation methods for arsenic removal from the ground water. International Journal of Environmental Engineering, 3, 48–71.
Argun, M. E., & Dursun, S. (2008). A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 99, 2516–2527. https://doi.org/10.1016/j.biortech.2007.04.037
Awokoya, K. N., Oninla, V. O., & Bello, D. J. (2021). Corrigendum to “Synthesis of oxidized Dioscorea dumentorum starch nanoparticles for the adsorption of lead(II) and cadmium(II) ions from [Environ. Nanotechnol. Monit. Manage. 15 (May) (2021) 100440]. Wastewater Environmental Nanotechnology, Monitoring & Management, 16, 100489. https://doi.org/10.1016/j.enmm.2021.100489
Azouaou, N., Sadaoui, Z., Djaafri, A., & Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 184, 126–134. https://doi.org/10.1016/j.jhazmat.2010.08.014
Babalola, J. O., Koiki, B. A., Eniayewu, Y., Salimonu, A., Olowoyo, J. O., Oninla, V. O., Alabi, H. A., Ofomaja, A. E., & Omorogie, M. O. (2016). Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies. Journal of Environmental Chemical Engineering, 4, 3527–3536. https://doi.org/10.1016/j.jece.2016.07.027
Babu, B. R., Parande, A. K., Raghu, S., & Kumar, T. P. (2007). Textile technology. Cotton textile processing: Waste generation and effluent treatment. Journal of Cotton Science, 11, 141–153.
Banat, M. E., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolourization of textile dye containing effluents, a review. Bioresource Technology, 58, 217–227. https://doi.org/10.1016/S0960-8524(96)00113-7
Barbusiński, K. (2005). The modified Fenton process for decolorization of dye wastewater. Polish Journal of Environmental Studies, 14, 281–285.
Basheer, A. A. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261, 583–593. https://doi.org/10.1016/j.molliq.2018.04.021
Basheer, A. A., & Ali, I. (2018). Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality, 30, 1088–1095. https://doi.org/10.1002/chir.22989
Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications. https://doi.org/10.1155/2018/3463724
Bautista, P., Mohedano, A. F., Gilarranz, M. A., Casas, J. A., & Rodriguez, J. J. (2007). Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 143, 128–134. https://doi.org/10.1016/j.jhazmat.2006.09.004
Bucchianico, A. D. (2008). Coefficient of determination (R2), In: Encyclopedia of statistics in quality and reliability, Wiley Online Library.
Cheung, C. W., Porter, J. F., & McKay, G. (2000). Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technology and Biotechnology, 75, 963–970. https://doi.org/10.1002/1097-4660(200011)75:11%3c963::AID-JCTB302%3e3.0.CO;2-Z
Çiner, F. (2018). Application of Fenton reagent and adsorption as advanced treatment processes for removal of Maxilon Red GRL. Glob. Nest. J., 20, 1–6.
Crini, G., & Badot, P.-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33, 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
Dahiru, M., Zango, Z. U., & Haruna, M. A. (2018). Cationic dyes removal using low-cost banana peel biosorbent. Am. J. Mater. Sci., 8, 32–38.
Dubinin, M. M., Zaverina, E. D., & Radushkevich, L. V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
Farinella, N. V., Matos, G. D., & Arruda, M. A. Z. (2007). Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresource Technology, 98, 1940–1946.
Freundlich, H. M. F. (1906). Uber die adsorption in lasungen. Zeitschrift Für Physikalische Chemie, 57, 385–470.
Gao, J., Qin, Y., Zhou, T., Cao, D., Xu, P., Hochstetter, D., & Wang, Y. (2013). Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. Journal of Zhejiang University Science B, 14(7), 650–658. https://doi.org/10.1631/jzus.B12a0225
Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20, 295–300. https://doi.org/10.1016/S0169-1317(01)00081-3
Gotvajn, A. Ž, & Zagorc-Končan, J. (2005). Combination of Fenton and biological oxidation for treatment of heavily polluted fermentation waste broth. Acta Chimica Slovenica, 52, 131–137.
Hameed, B. H., & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel an agricultural waste biomass. Journal of Hazardous Materials, 164, 870–875. https://doi.org/10.1016/j.jhazmat.2008.08.084
Hassan, M. M., & Carr, C. M. (2018). A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents. Chemosphere, 209, 201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
Hu, Q., & Zhang, Z. (2019). Application of Dubinin-Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005
Hutson, N. D., & Yang, R. T. (1997). Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption, 3, 189–195. https://doi.org/10.1007/BF01650130
Khodaie, M., Ghasemi, N., Moradi, B., & Rahimi, M. (2013). Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry. https://doi.org/10.1155/2013/383985
Kvålseth, T. O. (1985). Cautionary note about R2. American Statistician, 39, 279–285. https://doi.org/10.1080/00031305.1985.10479448
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl., 124, 1–39.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1403. https://doi.org/10.1021/ja02242a004
Lellis, B., Fávaro-Polonio, C., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., 3, 275–290. https://doi.org/10.1016/j.biori.2019.09.001
Lesaoana, M., Mlaba, R. P. V., Mtunzi, F. M., Klink, M. J., Ejidike, P., & Pakade, V. E. (2019). Influence of inorganic acid modification on Cr(VI) adsorption performance and the physicochemical properties of activated carbon. South African Journal of Chemical Engineering, 28, 8–18. https://doi.org/10.1016/j.sajce.2019.01
Li, F. T., Yang, H., Zhao, Y., & Xu, R. (2007). Novel modified pectin for heavy metal adsorption. Chinese Chemical Letters, 18, 325–328.
Liang, S., Guo, X., Feng, N., & Tian, Q. (2009). Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. Journal of Hazardous Materials, 170, 425–429.
Linh, H. X., Thu, N. T., Toan, T. Q., Huong, D. T., Giang, B. T., Ha, H. K. P., Nguyen, H.-T.T., Chung, N. T. K., Nguyen, T. K., & Hai, N. T. (2019). Fast and effective route for removing methylene blue from aqueous solution by using red mud-activated graphite composites. Journal of Chemistry. https://doi.org/10.1155/2019/2858170
Liu, Y., Jia, J., Gao, T., Wang, X., Yu, J., Wu, D., & Li, F. (2020). Rapid, selective adsorption of methylene blue from aqueous solution by durable nanofibrous membranes. Journal of Chemical & Engineering Data, 65, 3998–4008. https://doi.org/10.1021/acs.jced.0c00318
Merlain, T. G., Nanganoa, L. T., Desire, B. B. P., Nsami, N. J., & Mbadcam, K. J. (2016). Fenton-like oxidation of Acid Yellow 23 in the presence of iron rich soil. Advances in Chemical Engineering and Science, 6, 553–569. https://doi.org/10.4236/aces.2016.65048
Mohajerani, M., Mehrvar, M., & Ein-mozaffari, F. (2009). An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. International Journal of Engineering, 3, 120–146.
Muruganandham, M., & Swaminathan, M. (2004). Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes and Pigments, 62, 269–275. https://doi.org/10.1016/j.dyepig.2003.12.006
Naiya, T. K., Bhattacharya, A. K., Mandal, S., & Das, S. K. (2009). The sorption of lead(II) ions on rice husk ash. Journal of Hazardous Materials, 163, 1254–1264. https://doi.org/10.1016/j.jhazmat.2008.07.119
Nchoe, O. B., Ntuli, T. D., Klink, M. J., Mtunzi, F. M., & Pakade, V. E. (2021). A comparative study of acid-treated, base-treated and Fenton-like reagent-treated biomass for Cr(VI) sequestration from aqueous solutions. Water Environment Research, 93, 370–383. https://doi.org/10.1002/wer.1421
Ngah, W. S. W., & Hanafiah, M. A. K. M. (2008). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39, 521–530. https://doi.org/10.1016/j.bej.2007.11.006
Nidheesh, P. V., Gandhimathi, R., & Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20, 2099–2132. https://doi.org/10.1007/s11356-012-1385-z
Oninla, V. O., Olatunde, A. M., Babalola, J. O., Adesanmi, O. J., Towolawi, G. S., & Awokoya, K. N. (2018). Qualitative assessments of the biomass from oil palm calyxes and its application in heavy metals removal from polluted water. Journal of Environmental Chemical Engineering, 6, 4044–4053. https://doi.org/10.1016/j.jece.2018.05.030
Pakade, V. E., Ntuli’, T. D., & Ofomaja, A. E. (2017). Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder. Applied Water Science, 7, 3015–3030. https://doi.org/10.1007/s13201-016-0412-5
Piccin, J. S., Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by Chitosan. Brazilian Journal of Chemical Engineering, 28, 295–304. https://doi.org/10.1590/S0104-66322011000200014
Raghav, S., & Kumar, D. (2018). Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. Journal of Chemical and Engineering Data, 63, 1682–1697. https://doi.org/10.1021/acs.jced.8b00024
Rosales, E., Meijide, J., Tavares, T., Pazos, M., & Sanromán, M. A. (2016). Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Process Safety and Environment Protection, 101, 61–71.
Saechiam, S., & Sripongpun, G. (2019). Adsorption of malachite green from synthetic wastewater using banana peel adsorbents. Songklanakarin Journal of Science and Technology, 41, 21–29.
Saini, R. D. (2017). Textile organic dyes: Polluting effects and elimination methods from textile waste water. International Journal of Chemical Engineering Research, 9, 121–136.
Suganya, S., & Kumar, P. S. (2018). Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr(VI) ions. Journal of Industrial and Engineering Chemistry, 60, 418–430.
Suyantara, G. P. W., Hirajima, T., Miki, H., Sasaki, K., Yamane, M., Takida, E., Kuroiwa, S., & Imaizumi, Y. (2018). Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 554, 34–48.
Tekbas, M., Yatmaz, H. C., & Bektas, N. (2008). Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous and Mesoporous Materials, 115, 594–602.
Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim., 12, 217–222.
Thitame, P. V., & Shukla, S. R. (2016). Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials. International Journal of Environmental Science and Technology, 13, 561–570. https://doi.org/10.1007/s13762-015-0901-3
Wang, J. C., & Wang, H. (2017). Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures. Separation and Purification Technology, 187, 415–425. https://doi.org/10.1016/j.seppur.2017.06.076
Weber, W. J., & Morris, J. S. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–59.
Yakout, S. M. (2016). Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater. Journal of Radioanalytical and Nuclear Chemistry, 308, 555–565. https://doi.org/10.1007/s10967-015-4408-7
Zaharia, C., Diaconescu, R., & Surpăţeanu, M. (2007). Study of flocculation with Ponilit GT-2anionic polyelectrolyte applied into a chemical wastewater treatment. Central European Journal of Chemistry, 5, 239–256. https://doi.org/10.2478/s11532-006-0057-6
Zhang, Y., Li, M., Li, J., Yang, Y., & Liu, X. (2019). Surface modified leaves with high efficiency for the removal of aqueous Cr(VI). Applied Surface Science, 484, 189–196. https://doi.org/10.1016/j.apsusc.2019.04.088
Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227, 617–628. https://doi.org/10.1148/radiol.2273011499