Comparison of dispersion characteristics of hollow-core photonic crystal fibers filled with aromatic compounds
Tóm tắt
Từ khóa
#photonic crystal fibers (PCFs) #aromatic compounds #benzene #nitrobenzene #flat dispersionTài liệu tham khảo
Knight JC, Birks TA, Russell PSJ, and Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-9. DOI: https://doi.org/10.1364/OL.21.001547
Birks TA, Knight JC, and Russell PSJ. Endlessly single-mode photonic crystal fiber. Optics Letters. 1997;22(13):961-3. DOI: https://doi.org/10.1364/OL.22.000961
Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science. 1999;285(5433):1537-9. DOI: https://doi.org/10.1126/science.285.5433.1537
Philip Russell. Photonic Crystal Fibers. Science. 2003;299(5605):358-362. DOI: https://doi.org/10.1126/science.1079280
Buczynski R, Szarniak P, Pysz D, Kujawa I, Stepien R, Szoplik T. Properties of a double-core photonic crystal fiber with a square lattice. Proceedings of the SPIE. 2004;5576:81-7. DOI: https://doi.org/10.1117/12.581621
Nascimento I, Chesini G, Sousa M, Osório J, Baptista J, Cordeiro CM, et al. Application of a photonic crystal fiber LPG for vibration monitoring. Fifth European Workshop on Optical Fibre Sensors. 2013;8794. DOI: https://doi.org/10.1117/12.2026723
Barczak K. Application of Photonic Crystal Fiber in Optical Fiber Current Sensors. Acta Physica Polonica A. 2012;122(5):793-2. DOI: https://doi.org/10.12693/APhysPolA.122.793
Pinto AMR, Lopez-Amo M. Photonic Crystal Fibers for Sensing Applications. Journal of Sensors 2012;2012: 598178. DOI: https://doi.org/10.1155/2012/598178
Knight JC, Birks TA, Russell PSJ, de Sandro JP. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A. 1998;15(3):748-52. DOI: https://doi.org/10.1364/JOSAA.15.000748
E. Seraji F, Asghari F. Determination of Refractive Index and Confinement Losses in Photonic Crystal Fibers Using FDFD Method: A Comparative Analysis. International Journal of Optics and Photonics. 2009;3(1):3-7.
Martelli C, Canning J, Kristensen M, Groothoff N. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction. Sensors 2007;7(11):2492-6. DOI: https://doi.org/10.3390/s7112492
Ferrando A, Silvestre E, Miret JJ, Andrés P, Andrés MV. Guiding Mechanism in Photonic Crystal Fibers. Optics and Photonics News. 2000;11(12):32-3. DOI: https://doi.org/10.1364/OPN.11.12.000032
Mortensen NA. Effective area of photonic crystal fibers. Optics Express. 2002;10(7):341-8. DOI: https://doi.org/10.1364/OE.10.000341
Nagaraju N, Eliyaz M, Ksihore KLN. Dispersion and Effective Area of Air Hole Containing Photonic Crystal Fibres. IOSR Journal of Electronics and Communication Engineering. 2017;12(13):9-12. DOI: https://doi.org/10.9790/2834-1203040912
Reeves WH, Knight JC, Russell PSJ, Roberts PJ. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express. 2002;10(14):609-13. DOI: https://doi.org/10.1364/OE.10.000609
Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications. 2010;283(7):1331-7. DOI: https://doi.org/10.1016/j.optcom.2009.11.091
Karasawa N. Dispersion properties of liquid-core photonic crystal fibers. Applied Optics. 2012;51(21):5259-65. DOI: https://doi.org/10.1364/AO.51.005259
Olyaee S, Taghipour F. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss. Journal of Physics: Conference Series. 2011;276:012080. DOI: https://doi.org/10.1088/1742-6596/276/1/012080
Pniewski J, Stefaniuk T, Van HL, Long VC, Van LC, Kasztelanic R, et al. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics. 2016;55(19):5033-40. DOI: https://doi.org/10.1364/AO.55.005033
Xuan KD, Van LC, Long VC, Dinh QH, Van Mai L, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49(2):87. DOI: https://doi.org/10.1007/s11082-017-0929-3
White TP, McPhedran RC, de Sterke CM, Botten LC, Steel MJ. Confinement losses in microstructured optical fibers. Optics Letters. 2001;26(21):1660-2. DOI: https://doi.org/10.1364/OL.26.001660
Tajima K, Jian Z, Nakajima K, Sato K. Ultralow loss and long length photonic crystal fiber. Journal of Lightwave Technology. 2004;22(1):7-10. DOI: https://doi.org/10.1109/JLT.2003.822143
Chen D, Shen L. Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss. IEEE Photonics Technology Letters. 2007;19(4):185-7. DOI: https://doi.org/10.1109/LPT.2006.890040
Koohi-Kamalia F, Ebnali-Heidarib M, Moravvej-Farshic MK. Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration. International Journal of Optics and Photonics. 2012;6(2):83-96.
Thenmozhi H, Mani Rajan M, Devika V, Vigneswaran D, Ayyanar N. D-glucose sensor using photonic crystal fiber. Optik. 2017;145:489-94. DOI: https://doi.org/10.1016/j.ijleo.2017.08.039
Ebnali-Heidari M, Dehghan F, Saghaei H, Koohi-Kamali F, Moravvej-Farshi MK. Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. Journal of Modern Optics. 2012;59(16):1384-90. DOI: https://doi.org/10.1080/09500340.2012.715690
Liu S, Gao W, Li H, Dong Y, Zhang H. Liquid-filled simplified hollow-core photonic crystal fiber. Optics & Laser Technology. 2014;64:140-4. DOI: https://doi.org/10.1016/j.optlastec.2014.05.018
Van LC, Anuszkiewicz A, Ramaniuk A, Kasztelanic R, Xuan KD, Long VC, et al. Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics. 2017;19(12):125604. DOI: https://doi.org/10.1088/2040-8986/aa96bc
Bozolan A, de Matos CJS, Cordeiro CMB, dos Santos EM, Travers J. Supercontinuum generation in a water-core photonic crystal fiber. Opt Express. 2008;16(13):9671-6. DOI: https://doi.org/10.1364/OE.16.009671
Guo Z, Yuan J, Yu C, Sang X, Wang K, Yan B, et al. Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber. Progress In Electromagnetics Research M. 2016;48:67-76. DOI: https://doi.org/10.2528/PIERM15122302
Wang C-c, Li W-m, Li N, Wang W-q. Numerical simulation of coherent visible-to-near-infrared supercontinuum generation in the CHCl3-filled photonic crystal fiber with 1.06 μm pump pulses. Optics & Laser Technology. 2017;88:215-21. DOI: https://doi.org/10.1016/j.optlastec.2016.09.020
Ho PP, Alfano RR. Optical Kerr effect in liquids. Physical Review A. 1979;20(5):2170-87. DOI: https://doi.org/10.1103/PhysRevA.20.2170
Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, et al. An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chemical Physics Letters. 2003;369(3-4):318-24. DOI: https://doi.org/10.1016/S0009-2614(02)02021-3
Lim H, Wise FW. Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber. Optics Express. 2004;12(10):2231-5. DOI: https://doi.org/10.1364/OPEX.12.002231
Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Optics Express. 2008;16(8):5556-64. DOI: https://doi.org/10.1364/OE.16.005556
Wan B, Zhu L, Ma X, Li T, Zhang J. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Sensors. 2021;21(1):284. DOI: https://doi.org/10.3390/s21010284