Comparison of building modelling assumptions and methods for urban scale heat demand forecasting
Tóm tắt
Building energy evaluation tools available today are only able to effectively analyse individual buildings and usually either they require a high amount of input data or they are too imprecise in energy predictions at a city (district) scale because of too many assumptions made. In this paper, two tools based on 3D models are compared to see whether there is an approach that would probably be able to fit both – the amount of data available and the number of assumptions made. A case study in the German town of Essen was chosen in the framework of the research project WeBest, where six building types representing the most important building periods were analysed. The urban simulation tool SimStadt, an in-house development of HFT Stuttgart, based on 3D urban geometry, is used to calculate the heat demand for both single building scale and city district scale. The individual building typology results are compared with the commercial dynamic building simulation software TRNSYS. The influence of the availability and quality of data input regarding the geometrical building parameters on the accuracy of simulation models are analysed. Different Levels of Details (LoDs) of the 3D building models are tested to prove the scalability of SimStadt from single buildings to city districts without loss of quality and accuracy in larger areas with a short computational time.
Tài liệu tham khảo
Federal Ministry of Economics and Technology (2010) Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply. http://www.bmwi.de/English/Redaktion/Pdf/energy-concept
Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Applications of 3D city models: state of the art review. ISPRS Int J Geo-Inf 4:2842–2889. doi:10.3390/ijgi4042842
Zhan X, Zhu Q (2004) Applications of 3D city models based spatial analysis to urban design. Int. Arch. Photogramm. Remote Sens Spat Inf Sci XXXV/B2:325–329
Nouvel R, Schulte C, Eicker U, Pietruschka D (2013) CityGML- based 3D city Model for energy diagnostics and urban energy policy support. Proceedings of IBSA2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France. August 26–28
Carrion D, Lorenz A, Kolbe T (2010) Estimation of the energetic rehabilitation state of the buildings for the city of Berlin using a 3D city Model represented in cityGML, Proceedings of ISPRS Conference: International Conference on 3D Geoionformation. XXXVIII-4, Berlin, p 31–35
Bahu JM, Koch A, Kremers E, Murshed SM (2014) Towards a 3D spatial urban energy modelling approach. Int J 3-D Inf Model 3:1–16
Robinson D, Haldi F, Kämpf J, Leroux P, Perez D, Rasheed A, Wilke U (2009) CITYSIM: Comprehensive micro-simulation of resource flows for sustainable urban planning. Proceedings of 11th International IBPSA Conference, Building Simulation 2009, Glasgow, Scotland
SimStadt Project (2012-2014) Heat demand simulation of city quarters. Website http://www.simstadt.eu/en/index.html
Bruse M, Nouvel R, Wate P, Kraut V, Coors V. An energy-related CityGML ADE and its application for heating demand calculation. Int J 3-D Inform Model (IJ3DIM) 4(3):59–77. IGI GLobal, doi: 10.4018/IJ3DIM.2015070104
Blesl M, Kempe S, Huther H (2010) Capture of spatial high-resolution building heating energy demand. Euroheat Power 39(1-2):28–33 [in German]
Strzalka A, Boghdan J, Coors V, Eicker U (2011) 3D city modelling for urban scale heating energy demand forecasting. J HVAC&R Res 17(4):526–539
Nouvel R, Zirak M, Dastageeri H, Coors V, Eicker U (2014) Urban energy analysis based on 3D city model for national scale applications, BauSIM 5th German-Austrian IBPSA Conference. RWTH Aachen University
Nouvel R, Brassel KH, Bruse M, Duminil É, Coors V, Eicker U, Robinson D (2015) SimStadt, a new workflow-driven urban energy simulation platform for cityGML city models. CISBAT Intern. Conference 2015. Lausanne, September
Kaden R, Kolbe T (2014) Simulation-based total energy demand estimation of buildings using semantic 3D city models. Int J 3-D Inf Model 3:35–53
Nouvel R, Mastrucci A, Leopold U, Baume O, Coors V, Eicker U (2015) Combining GIS–based statistical and engineering urban heat consumption models: towards a new framework for multi-scale policy support. Energy Build 107:204–212
Kaden R, Kolbe T (2013) Citywide energy demand estimation of buildings using semantic 3D city models and statistical data. ISPRS Anna Photogrammetry Remote Sensing Spat Inf Sci II-2/W1:163–171
IWU (2015) German Building Typology
IWU (2015) http://www.iwu.de/1/forschung/energie/completed-projects/tablua/