Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs

American Chemical Society (ACS) - Tập 19 - Trang 1643-1654 - 2011
Sandipan Sinha1, Gary Pipes2, Elizabeth M. Topp1, Pavel V. Bondarenko3, Michael J. Treuheit2, Himanshu S. Gadgil2
1Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, USA
2Department of Analytical and Formulation Sciences, Amgen Inc., Seattle, USA
3Department of Formulation and Analytical Resources, Amgen Inc., Thousand Oaks, USA

Tóm tắt

High-performance liquid chromatography (LC) and liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-MS) methods with various sample preparation schemes were compared for their ability to identify and quantify glycoforms in two different production lots of a recombinant monoclonal IgG1 antibody. IgG1s contain a conserved N-glycosylation site in the fragment crystallizable (Fc) subunit. Six methods were compared: (1) LC/ESI-MS analysis of intact IgG, (2) LC/ESI-MS analysis of the Fc fragment produced by limited proteolysis with Lys-C, (3) LC/ESI-MS analysis of the IgG heavy chain produced by reduction, (4) LC/ESI-MS analysis of Fc/2 fragment produced by limited proteolysis and reduction, (5) LC/MS analysis of the glycosylated tryptic fragment (293EEQYNSTYR301) using extracted ion chromatograms, and (6) normal phase HPLC analysis of N-glycans cleaved from the IgG using PNGase F. The results suggest that MS quantitation based on the analysis of Fc/2 (4) is accurate and gives results that are comparable to normal phase HPLC analysis of N-glycans (6).

Tài liệu tham khảo

Zhang, J.; Wang, D. I. Quantitative Analysis and Process Monitoring of Site-Specific Glycosylation Microheterogeneity in Recombinant Human Interferon-γ from Chinese Hamster Ovary Cell Culture by Hydrophilic Interaction Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1998, 712, 73–82. Kunkel, J. P.; Jan, D. C.; Butler, M.; Jamieson, J. C. Comparisons of the Glycosylation of a Monoclonal Antibody Produced Under Nominally Identical Cell Culture Conditions in Two Different Bioreactors. Biotechnol. Prog. 2000, 16, 462–470. Delorme, E.; Lorenzini, T.; Giffin, J.; Martin, F.; Jacobsen, F.; Boone, T.; Elliott, S. Role of Glycosylation on the Secretion and Biological Activity of Erythropoietin. Biochemistry 1992, 31, 9871–9876. Keusch, J.; Lydyard, P. M.; Delves, P. J. The Effect on IgG Glycosylation of Altering β1, 4-galactosyltransferase-1 activity in B cells. Glycobiology 1998, 8, 1215–1220. Tagashira, M.; Iijima, H.; Isogai, Y.; Hori, M.; Takamatsu, S.; Fujibayashi, Y.; Yoshizawa-Kumagaya, K.; Isaka, S.; Nakajima, K.; Yamamoto, T.; Teshima, T.; Toma, K. Site-Dependent Effect of O-Glycosylation on the Conformation and Biological Activity of Calcitonin. Biochemistry 2001, 40, 11090–11095. Jefferis, R. Antibody Therapeutics: Isotype and Glycoform Selection. Expert Opin. Biol. Ther. 2007, 7, 1401–1413. Edelman, G. M.; Cunningham, B. A.; Gall, W. E.; Gottlieb, P. D.; Rutishauser, U.; Waxdal, M. J. The Covalent Structure of an Entire γ-G Immunoglobulin Molecule. 1969. J. Immunol. 2004, 173, 5335–5342. Mimura, Y.; Church, S.; Ghirlando, R.; Ashton, P. R.; Dong, S.; Goodall, M.; Lund, J.; Jefferis, R. The Influence of Glycosylation on the Thermal Stability and Effector Function Expression of Human IgG1-Fc: Properties of a Series of Truncated Glycoforms. Mol. Immunol. 2000, 37, 697–706. Krapp, S.; Mimura, Y.; Jefferis, R.; Huber, R.; Sondermann, P. Structural Analysis of Human IgG-Fc Glycoforms Reveals a Correlation Between Glycosylation and Structural Integrity. J. Mol. Biol. 2003, 325, 979–989. Masuda, K.; Yamaguchi, Y.; Kato, K.; Takahashi, N.; Shimada, I.; Arata, Y. Pairing of Oligosaccharides in the Fc Region of Immunoglobulin G. FEBS Lett. 2000, 473, 349–357. Wuhrer, M.; Deelder, A. M.; Hokke, C. H. Protein Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry. 18. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 825, 124–133. Gadgil, H. S.; Bondarenko, P. V.; Pipes, G. D.; Dillon, T. M.; Banks, D.; Abel, J.; Kleemann, G. R.; Treuheit, M. J. Identification of Cysteinylation of a Free Cysteine in the Fab Region of a Recombinant Monoclonal IgG1 Antibody Using Lys-C Limited Proteolysis Coupled with LC/MS Analysis. Anal. Biochem. 2006, 355, 165–174. Gadgil, H. S.; Pipes, G. D.; Dillon, T. M.; Treuheit, M. J.; Bondarenko, P. V. Improving Mass Accuracy of High Performance Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry of Intact Antibodies. J. Am. Soc. Mass Spectrom. 2006, 17, 867–872. Gadgil, H. S.; Bondarenko, P. V.; Pipes, G.; Rehder, D.; McAuley, A.; Perico, N.; Dillon, T.; Ricci, M.; Treuheit, M. The LC/MS Analysis of Glycation of IgG Molecules in Sucrose Containing Formulations. J. Pharm. Sci. 2007, 96, 2607–2621. Mimura, Y.; Ashton, P. R.; Takahashi, N.; Harvey, D. J.; Jefferis, R. Contrasting Glycosylation Profiles Between Fab and Fc of a Human IgG Protein Studied by Electrospray Ionization Mass Spectrometry. J. Immunol. Methods 2007, 326, 116–126. Hills, A. E.; Patel, A.; Boyd, P.; James, D. C. Metabolic Control of Recombinant Monoclonal Antibody N-Glycosylation in GS-NS0 Cells. Biotechnol. Bioeng. 2001, 75, 239–251. Ren, D.; Pipes, G.; Xiao, G.; Kleemann, G. R.; Bondarenko, P. V.; Treuheit, M. J.; Gadgil, H. S. Reversed-Phase Liquid Chromatography-Mass Spectrometry of Site-Specific Chemical Modifications in Intact Immunoglobulin Molecules and Their Fragments. J. Chromatogr. A 2007, 1179, 198–204. Ren, D.; Pipes, G. D.; Hambly, D. M.; Bondarenko, P. V.; Treuheit, M. J.; Brems, D. N.; Gadgil, H. S. Reversed-Phase Liquid Chromatography of Immunoglobulin G Molecules and Their Fragments with the Diphenyl Column. J. Chromatogr. A 2007, 1175, 63–68. Masuda, K.; Yamaguchi, Y.; Kato, K.; Takahashi, N.; Shimada, I.; Arata, Y. Pairing of Oligosaccharides in the Fc Region of Immunoglobulin G. FEBS Lett. 2000, 473, 349–357. Boushaba, R.; Kumpalume, P.; Slater, N. K. Kinetics of Whole Serum and Prepurified IgG Digestion by Pepsin for F(ab′)2 Manufacture. Biotechnol. Prog. 2003, 19, 1176–1182. Leslie, R. G.; Melamed, M. D.; Cohen, S. The Products from Papain and Pepsin Hydrolyses of Guinea Pig Immunoglobulins γ-1G and γ-2 G. Biochem. J. 1971, 121, 829–837. Bongers, J.; Cummings, J. J.; Ebert, M. B.; Federici, M. M.; Gledhill, L.; Gulati, D.; Hilliard, G. M.; Jones, B. H.; Lee, K. R.; Mozdzanowski, J.; Naimoli, M.; Burman, S. Validation of a Peptide Mapping Method for a Therapeutic Monoclonal Antibody: What Could We Possibly Learn About a Method We Have Run 100 Times? J. Pharm. Biomed. Anal. 2000, 21, 1099–1128. Hills, A. E.; Patel, A.; Boyd, P.; James, D. C. Metabolic Control of Recombinant Monoclonal Antibody N-Glycosylation in GS-NS0 Cells. Biotechnol. Bioeng. 2001, 75, 239–251. Bykova, N. V.; Rampitsch, C.; Krokhin, O.; Standing, K. G.; Ens, W. Determination and Characterization of Site-Specific N-Glycosylation Using MALDI-Qq-TOF Tandem Mass Spectrometry: Case Study with a Plant Protease. Anal. Chem. 2006, 78, 1093–1103. Mirgorodskaya, E.; Krogh, T. N.; Roepstorff, P. Characterization of Protein Glycosylation by MALDI-TOFMS. Methods Mol. Biol. 2000, 146, 273–292.