Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids

Plasma Chemistry and Plasma Processing - Tập 34 - Trang 1101-1114 - 2014
Ahmad Hamdan1, Cédric Noël1,2, Jaafar Ghanbaja1, Thierry Belmonte1,2
1UMR CNRS 7198, Institut Jean Lamour, Université de Lorraine, Nancy, France
2UMR CNRS 7198, Institut Jean Lamour, CNRS, Nancy, France

Tóm tắt

Synthesis of aluminium-containing nanoparticles (NPs) by electrical discharges was performed in three dielectric liquids (heptane, liquid nitrogen and water) with aluminium electrodes. The nature of the liquid plays an essential role in the synthesis yield and in the structural properties of NPs. Time-resolved optical emission spectroscopy of selected emission lines emitted during the discharge and its time afterglow was used to observe the chemical changes occurring in the gas phase. It turns out that in heptane and liquid nitrogen, crystalline metallic NPs (from 5 to 10 nm in diameter) are synthesized and oxidized next into amorphous alumina when they are in contact with air, once the liquid is evaporated. In heptane, the transformation of the liquid itself into hydrogenated amorphous carbon creates a kind a matrix in which the aluminium NPs are embedded. Sometimes, a protective graphite shell grows around the NPs and protects them from any further oxidation. In water, these crystalline metallic NPs are synthesized during the first 800 ns of the discharge process, when oxidation is limited by the outward flux of the metallic vapour. They are oxidized next in water. A second type of alumina NPs (several 10 s of nm in diameter) are produced from 800 ns on. They are likely formed from AlO molecules and no longer from aluminium atoms. In every liquid, sub-micrometric particles are also found due to droplet emission from the liquid well created during impacts of spark discharges on electrodes.

Tài liệu tham khảo

Ostrikov K, Neyts EC, Meyyappan M (2013) Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv Phys 62:113–224 Ostrikov K (2011) Control of energy and matter at nanoscales: challenges and opportunities for plasma nanoscience in a sustainability age. J Phys D Appl Phys 44:174003 Graham W, Stalder K (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037 Chiang W-H, Sankaran RM (2007) Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl Phys Lett 91:121503 Mariotti D, Sankaran RM (2011) Perspectives on atmospheric-pressure plasmas for nanofabrication. J Phys D Appl Phys 44:174023 Mariotti D, Patel J, Švrček V, Maguire P (2012) Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process Polym 9:1074–1085 Sano N, Wang H, Alexandrou I, Chhowalla M, Teo KBK, Amaratunga GAJ, Iimura K (2002) Properties of carbon onions produced by an arc discharge in water. J Appl Phys 92:2783–2788 Hamdan A, Noël C, Ghanbaja J, Migot-Choux S, Belmonte T (2013) Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater Chem Phys 142:199–206 Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7:313–320 Lo CH, Tsung TT, Lin HM (2007) Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). J Alloys Comp 434:659–662 Hamdan A, Kosior F, Noel C, Henrion G, Audinot JN, Gries T, Belmonte T (2013) Plasma-surface interaction in heptane. J Appl Phys 113:213303 Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47:224016 Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R (2008) Electrical breakdown of water in microgaps. Plasma Sources Sci Technol 17:024010 Sano N, Kawanami O, Charinpanitkul T, Tanthapanichakoon W (2008) Study on reaction field in arc-in-water to produce carbon nano-materials. Thin Solid Films 516:6694–6698 Hamdan A, Audinot J-N, Noel C, Kosior F, Henrion G, Belmonte T (2013) Interaction of micro-discharges in heptane with metallic multi-layers. Appl Surf Sci 274:378–391 Bouchet D, Colliex C (2003) Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy 96:139–152 Fehlner FP, Mott NF (1970) Low-temperature oxidation. Oxid Met 2:59–99 Hamdan A, Marinov I, Rousseau A, Belmonte T (2014) Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane. J Phys D Appl Phys 47:055203 Tortai JH, Bonifaci N, Denat A, Trassy C (2005) Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge. J Appl Phys 97:053304 Sakka T, Nakajima T, Ogata YH (2002) Spatial population distribution of laser ablation species determined by self-reversed emission line profile. J Appl Phys 92:2296–2303 Descoeudres A, Hollenstein C, Demellayer R, Wälder G (2004) Optical emission spectroscopy of electrical discharge machining plasma. J Mater Process Technol 149:184–190