Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh giữa cây giống Coffea arabica L. ‘Laurina’ và C. arabica ‘Bourbon’ được trồng trong ánh sáng ban ngày hoặc bóng tối về thành phần polysaccharide trong thành tế bào và hàm lượng caffeine cũng như axit chlorogenic
Tóm tắt
Thành phần polysaccharide trong thành tế bào đã thay đổi giữa cotyledons, hypocotyls và rễ. Cả đột biến laurina và sự hiện diện của ánh sáng đều không tác động đến thành phần này. Coffea arabica ‘Laurina’, một biến thể tự nhiên của Coffea arabica ‘Bourbon’ (B), còn được biết đến với tên gọi ‘Bourbon Pointu’ (BP). Trong cây con dưới ánh sáng ban ngày, đột biến laurina dẫn đến sự phát triển của các hypocotyl lùn, nhưng hiệu ứng này biến mất trong điều kiện bóng tối. Bước đầu tiên trong công việc của chúng tôi là phân tích tác động của đột biến lên thành phần monosaccharide trong thành tế bào ở cotyledons, hypocotyls và rễ liên quan đến điều kiện phát triển (ánh sáng ban ngày so với bóng tối). Thứ hai, cùng một loại so sánh đã được thực hiện cho hàm lượng caffeine và axit chlorogenic (CQA). Các polysaccharide trong thành tế bào (CWP) có mặt trong cotyledons, hypocotyls và rễ đã được xác định. Không có đột biến laurina hay điều kiện phát triển nào tác động đến thành phần CWP. Ngược lại, có sự khác biệt rõ rệt giữa cotyledons, hypocotyls và rễ về thành phần CWP, hàm lượng CQA và caffeine. Cuối cùng, đột biến và ánh sáng không làm thay đổi hàm lượng CQA ở cả ba cơ quan, trong khi đột biến làm giảm hàm lượng caffeine (CAF) nhưng ánh sáng thì không.
Từ khóa
#Coffea arabica #đột biến laurina #thành tế bào #polysaccharide #caffeine #axit chlorogenicTài liệu tham khảo
Adler S, Verdeil J, Lartaud M, Fock-Bastide I, Joët T, Conéjéro G, Noirot M (2014) Morphological and histological impacts of the laurina mutation on fructification and seed characteristics in Coffea arabica L. Trees 28:585–595
Adler S, Verdeil J, Conéjéro G, Fock-Bastide I, Zaharia LI, Sarrazin A, Hoareau J, Noirot M (2015) Daylight is directly implied in the expression of the laurina mutation in Coffea arabica L. Impact on semi-dwarfism, cell number and hormonal profiles in hypocotyls. Trees. doi:10.1007/s00468-015-1200-9
Aerts R, Baumann T (1994) Distribution and utilization of chlorogenic acid in Coffea seedlings. J Exp Bot 45:497–503
Amorin HV, Teixeira AA, Guercio MA, Cruz VF, Malavolta E (1974) Chemistry of Brazilian green coffee and the quality of the beverage II phenolic compounds. Turrialba 24:217–221
Atalla R, Hackney J, Uhlin I, Thompson N (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112
Baumann T, Rohrig L (1989) Formation and intracellular accumulation of caffeine and chlorogenic acid in suspension cultures of Coffea arabica. Phytochem 28:2667–2669
Baumann T, Wanner L (1972) Untersuchungen über den transport von kaffein in der kaffeepflanze Coffea arabica. Planta 108:11–19
Baumann T, Rodriguez M, Kappeler A (1991) Chlorogenic acid in leaf disks, suspension-cultured cells, and protoplasts of coffee (Coffea arabica L.). Physiological role and subcellular localization. Proc Int Congr ASIC 14:465–469
Baumann T, Mösli S, Schulthess B, Aerts R (1993) Interdependence of caffeine and chlorogenic acid (5-CQA) metabolism in coffee. Proc Int Congr ASIC 15:134–140
Brett CT, Waldron KW (1996) Physiology and biochemistry of plant cell walls. In: Black M, Charlwood B (eds) Topics in plant functional biology. Chapman and Hall, London, pp 42–43
Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe DC, Fincher GB (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12:691–706
Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30
Cecy I, Correa J (1984) Hemicellulosic polymers from the leaves of Coffea arabica. Phytochem 23:1271–1276
Charrier A, Berthaud J (1975) Variation de la teneur en caféine dans le genre Coffea. Café Cacao Thé 19:251–264
Chevalier A (1947) Les caféiers du globe: III. Systématique des caféiers et faux-caféiers maladies et insectes nuisibles. In: Lechevallier P (ed), Encyclopédie Biologique n°28, Paris, p 356
Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Wilson KC (eds) Coffee, botany, biochemistry and production of beans and beverage. Avi Publ, Westport, pp 305–374
Clifford MN, Williams T, Bridson T (1989) Chlorogenic acids and caffeine as possible taxonomic criteria in Coffea and Psilanthus. Phytochem 28:829–838
Darvill AG, McNeil M, Albersheim P, Delmer DP (1980) The primary cell walls of flowering plants. In: Tolbert NE (ed) The biochemistry of plants, vol I. Academic Press, New York, pp 91–162
Dentan E (1977) Structure fine du grain de café vert. Proc Int Congr ASIC 8:59–64
Dong Q, Fang J (2000) Characterization of polysaccharides from the roots of Sophora subprostrata. Zhongguo yao xue za zhi 36:85–87
Ferrier WG (1960) The crystal structure of β-D-glucose. Acta crystal 13:678
Fischer M, Reimann S, Trovato V, Redgwell RJ (2001) Polysaccharides of green arabica and robusta coffee beans. Carbohydrate Res 330:93–101
Gabriel KR (1969) Simultaneous test procedures—some theory on multiple comparisons. Ann Math Stat 40:224–250
Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of Pectic Arabinan in Arabidopsis. Plant Physiol 140:49–58
Horman I, Viani R (1972) The nature and conformation of caffeine-chlorogenate complex of coffee. J Food Sci 37:925–927
Joët T, Salmona J, Laffargue A, Descroix F, Dussert S (2010) Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Envir 33:1220–1233
Kamerling JP (2007) Comprehensive glycoscience, from chemistry to systems biology, vol 2. Elsevier, Oxford
Kim JB, Carpita NC (1992) Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiol 98:646–653
Krug CA (1949) Mutaçoes em Coffea arabica L. Bragantia 9:1–10
Ky CL, Barre P, Noirot M (2013) Genetic investigations on the caffeine and chlorogenic acid relationship in an interspecific cross between Coffea liberica dewevrei and C. pseudozanguebariae. Tree Genet Genomes 9:1043–1049
Lécolier A, Besse P, Charrier A, Tchakaloff TN, Noirot M (2009a) Unraveling the origin of Coffea arabica ‘Bourbon pointu’ from La Réunion: a historical and scientific perspective. Euphytica 168:1–10
Lécolier A, Verdeil JL, Escoute J, Chrestin H, Noirot M (2009b) Laurina mutation affected Coffea arabica tree size and shape mainly through internode dwarfism. Trees 23:1043–1051
Lécolier A, Noirot M, Escoute J, Chrestin H, Verdeil JL (2009c) Early effects of the mutation laurina on the shoot apex functioning of coffee tree and analysis of the plastochron phases: relationships with the dwarfism of leaves. Trees 23:673–682
Lima RB, dos Santos TB, Vieira LGE, Ferrarese MdLL, Ferrarese-Filho O, Donatti L et al (2013) Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea Arabica L.). Carbohydr Polym 93:135–143
Lima RB, dos Santos TB, Vieira LGE, Ferrarese MdLL, Ferrarese-Filho O, Donatti L et al (2014) Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydr Polym 112:686–694
Maier HG (1987) The acids of coffee. Proc Int Congr ASIC 12:229–237
McCann MC, Roberts K (1994) Changes in cell wall architecture during cell elongation. J Exp Bot 45:1683–1691
McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334
Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C (2006) Evolution in caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Ann Bot 98:33–40
Nevins DJ, English PD, Albersheim P (1968) Changes in cell wall polysaccharides associated with growth. Plant Physiol 43:914–922
Payen A (1846) Premier mémoire sur le café. CR Acad Sci Paris 22:724–737
Qin Y, Zhao J (2007) Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sex Plant Reprod 20:213–224
Redgwell R, Curti D, Fischer M, Nicolas P, Fay L (2002) Coffee bean arabinogalactans: acidic polymers covalently linked to protein. Carbohydrate Res 337:239–253
Santos H, Buckeridge M (2004) The role of the storage carbon of cotyledons in the establishment of seedlings of Hymenaea courbaril under different light conditions. Ann Bot 94:819–830
Scheffé H (1959) The analysis of variance. Wiley, New-york
Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161
Sommerville C (2006) Cellulose synthesis in higher plant. Ann Rev Cell Dev Biol 22:53–78
Sondheimer E, Covitz F, Marquisee MJ (1961) Association of naturally occuring compounds, the chlorogenic acid-caffeine complex. Arch Biochem Biophys 93:63–71
Streuli H (1970) Alkaloidhaltige Genussmittel, Gewurze. In: Schormuller J (ed) Kaffee. Springer, Berlin Heidelberg, p 55
Sutherland P, Hallett I, Macrae E, Fischer M, Redgwell R (2004) Cytochemistry and immunolocalisation of polysaccharides and proteoglycans in the endosperm of green Arabica coffee beans. Protoplasma 223:203–211
Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424
Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard CMGC (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker Inc, New York, pp 287–339
Wenzel GE, Correa JBC (1977) Fractionation of the hemicellulose and structural analysis of-O-methylglucuronoxylans. Anais Academia Brazileira Ciencias 49:605–613
Whitney SE, Gothard MG, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–664
Wolfrom ML, Patin DL (1965) Carbohydrates of the coffee bean. IV. An arabinogalactan. J Org Chem 30:4060–4063
Wolfrom ML, Laver ML, Patin DL (1961) Carbohydrates of coffee bean. II. Isolation and characterization of a mannan. J Org Chem 26:4533–4536