Comparison Between γ-Bi2MoO6 and Bi2WO6 Catalysts in the CO Oxidation

Journal of Materials Synthesis and Processing - Tập 9 - Trang 207-212 - 2001
R. Rangel1, P. Bartolo-Pérez2, A. Gómez-Cortés3, G. Díaz3, S. Fuentes4, D. H. Galván4
1Facultad de Ingenieria Química, Universidad Michoacana de S. N. H., Morelia, Michoacán, México
2Departamento de Física Aplicada, CINVESTAV-IPN Unidad Mérida, Mérida, Yuc., México
3Instituto de Física-UNAM, México, D.F
4Centro de Ciencias de la Materia Condensada-UNAM, Ensenada, B. C., México

Tóm tắt

Bismuth molybdate (γ-Bi2MoO6) and bismuth tungstate (Bi2WO6) catalysts were prepared by solid-state reaction and their catalytic properties evaluated in the CO oxidation reaction. We characterize their structure by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and BET nitrogen absorption. X-ray diffraction analysis shows that both γ-Bi2MoO6 and Bi2WO6 are structural analogs (SG P21 ab). Auger analysis shows that Bi2WO6 catalysts have more bismuth on the surface than γ-Bi2MoO6, although both samples are bismuth deficient as compared to the stoichiometric compound. The results regarding catalytic activity show that Bi2WO6 prepared at 1073 K reaches total conversion of CO (100%) at a lower temperature when compared to γ-Bi2MoO6. It indicates that Bi2WO6 is a potential candidate to be used as catalyst in the CO to CO2 oxidation.

Tài liệu tham khảo

A. F. Van den Elzen and G. D. Rieck, Acta Crystallogr. B 29, 2436 (1973). R. G. Teller, J. F. Brazdil, R. K. Graselli, and J. D. Jorgensen, Acta Crystallogr. C 40, 2001 (1984). F. Theobald, A. Laarif, and A. W. Hewat, Ferroelectrics 56, 219 (1984). R. W. Wolfe, R. E. Newnahm, and M. I. Kay, Solid State Commun. 7, 1797 (1969). J. G. Thompson, S. Schmid, R. L. Wethers, A. D. Rae, and J. D. Fitz Gerald, J. Solid State Chem. 101, 309 (1992). D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr. B 47, 870 (1991). R. K. Grasselli, in Heterogeneous Catalysis (Proc. 2nd Symp. Ind. Corporative Chemistry Programs of the Texas A &; M University) B. L. Shapiro, Ed. (Texas A &; M Univ. Press, College Station, Texas), pp. 182. D. H. Galván, S. Fuentes, M. Avalos-Borja, L. Cota-Araiza, J. Cruz Reyes, E. A. Early, and M. B. Maple, Catal. Lett. 18, 273 (1993). Z. Bing, S. Pei, S. Shishan, and G. Xiexian, J. Chem. Soc. Faraday Trans. 66, 3145 (1990). R. K. Grasselli and J. D. Burrington, Advan. Catal. 30, 133 (1981). J. G. Thompson, S. Schmid, R. L. Withers, A. D. Rae, and J. D. Fitz Gerald, J. Solid Chem. 101, 309 (1992). A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr. B 47, 87 (1991). A. Watanabe, J. Solid State Chem. 41, 160 (1982). D. H. Galván, M. Avalos-Borja, S. Fuentes, L. Cota-Araiza, J. Cruz Reyes, F. F. Castillón, E. A. Early, and M. B. Maple, MRS Symp. Proc. 368, 265 (1995). D. H. Galván, F. F. Castillón, L. A. Gómez, M. Avalos-Borja, L. Cota, S. Fuentes, P. Bartolo, and M. B. Maple, Reaction Kinet. Catal. Lett. 67, 205 (1999). J. T. Kummer, Progr. Energy Combustion Sci. 6, 177 (1980). D. H. Galván, G. Alonso, R. Rangel, M. Del Valle, E. Adem, and S. Fuentes, J. Catal. 189, 263 (2000). S. J. Tauster, T. A. Pecoraro, and R. R. Chianelli, J. Catal. 63, 515 (1980). S. Harris, and R. R. Chianelli, J. Catal. 86, 400 (1984). R. Rousseau, E. Canadell, P. Alemany, D. H. Galvan, and R. Hoffmann, Inorg. Chem. 36, 4627 (1997). D. H. Galvan, A. Reyes Serrato, and P. Alemany, this paper was already submitted for publication in Physica Status Solidi.