Comparing the potential production and value of high‐energy liquid fuels and protein from marine and freshwater macroalgae

GCB Bioenergy - Tập 7 Số 4 - Trang 673-689 - 2015
Nicolas Neveux1, Marie Magnusson1, Thomas Maschmeyer2, Rocky de Nys1, Nicholas A. Paul1
1School of Marine & Tropical Biology Centre for Macroalgal Resources & Biotechnology James Cook University Townsville Queensland 4811 Australia
2School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia

Tóm tắt

AbstractThe biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high‐energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwaterOedogoniumand marineDerbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest forOedogonium(17.7%, dry weight) andDerbesia(16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1forDerbesia. The projected value of the six macroalgae was increased by 45–77% (up toUS$7700 ha−1 yr−1) through the extraction of protein prior to the conversion of the residual biomass to biocrude. This study highlights the importance of optimizing biomass productivities for high‐energy fuels and targeting additional coproducts to increase value.

Từ khóa


Tài liệu tham khảo

10.1016/j.biortech.2010.06.152

10.1016/j.biortech.2011.01.031

10.1111/jpy.12154‐13‐071

ARENA(2012)Advanced Biofuels Study Strategic Directions for Australia. Australian Renewable Energy Agency. Available at:http://www.arena.gov.au/_documents/abir/Advanced-Biofuels-Study-Appendix.pdf(accessed 15 August 2013).

10.1007/s10311-005-0020-3

10.1016/j.biortech.2010.06.028

10.4155/bfs.12.42

10.1016/j.tifs.2012.07.002

10.1007/s10811-008-9385-6

10.1016/j.rser.2009.10.009

10.1023/A:1008077722769

10.1016/j.fuel.2011.10.055

10.1016/S0016-2361(01)00131-4

10.1016/j.biotechadv.2007.02.001

Chopin T, 2009, The Encyclopedia of Ocean Sciences, 4477

10.1111/gcbb.12097

10.1126/science.1152747

10.1111/j.1757-1707.2011.01115.x

10.1016/j.apenergy.2009.04.043

10.1016/S0924-2244(99)00015-1

10.1016/S0021-9258(18)64849-5

10.1039/c1gc00015b

10.1007/s11027-012-9395-1

10.1007/BF02185904

10.1111/j.1365-2095.2007.00450.x

10.1111/j.1757-1707.2012.01175.x

10.1139/m62-029

10.1007/s10811-010-9632-5

10.1016/j.aquaculture.2005.04.058

10.1016/j.algal.2013.04.006

10.1021/ef201373m

Jung KA, 2012, Potentials of macroalgae as feedstocks for biorefinery, Bioresource Technology, 135, 186

10.1007/s11027-010-9275-5

10.1016/j.biortech.2010.05.035

10.1021/bm061185q

10.1016/j.biombioe.2012.04.021

10.1371/journal.pone.0064168

10.1016/j.biortech.2013.08.112

Lobban CS, 1996, Seaweed Ecology and Physiology, 146

10.1016/j.biombioe.2012.12.029

Lourenço SO, 2002, Amino acid composition, protein content and calculation of nitrogen to protein conversion factors for 19 tropical seaweeds, Phycological Research, 50, 233, 10.1111/j.1440-1835.2002.tb00156.x

10.1023/A:1023807503255

10.1111/j.1757-1707.2009.01026.x

10.1007/s10126‐014‐9564‐1

10.1007/s10811-010-9504-z

10.1016/S0960-8524(01)00118-3

10.1016/j.biortech.2005.04.008

10.1016/j.biortech.2012.01.047

10.1007/s10811-008-9314-8

10.1016/j.aquaculture.2010.06.002

10.1016/j.fuel.2012.03.031

10.1016/j.biortech.2010.06.158

10.1016/j.aquaculture.2008.05.024

Paul NA, 2012, Aquaculture: Farming Aquatic Animals and Plants, 268, 10.1002/9781118687932.ch13

10.1016/j.aquaculture.2008.07.035

PerlackRD WrightLL TurhollowAF GrahamRL StokesBJ ErbachDC(2005)Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion‐ton annual supply. DOE GO‐102005‐2135 Oak Ridge National Laboratory. Available at:www.esd.ornl.gov/eess/FinalBillionOnVisionReport2.pdf(accessed 15 June 2013).

10.1039/b810100k

10.1016/j.biortech.2010.06.035

10.1017/CBO9780511806384

10.1126/science.1114736

10.1016/j.biombioe.2008.02.012

10.1371/journal.pone.0081631

10.1016/j.biortech.2007.11.036

10.4155/bfs.12.29

10.1016/j.fcr.2008.03.001

10.1371/journal.pone.0036470

10.4172/2157-7463.1000148

10.1007/s11746-000-0019-3

Taylor R, 2005, Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate, Botanica Marina, 44, 327

10.1016/j.energy.2011.03.013

10.1016/j.biortech.2011.06.041

Weaver JW, 2004, Characteristics of spilled oils, fuels, and petroleum products: 3a. simulation of oil spills and dispersants under conditions of uncertainty, US EPA, Ecosystems Research Division National Exposure Research Laboratory, Athens, Georgia, 30605, 648

10.1016/j.biortech.2010.07.017

10.1021/bp9900920

10.1021/ef100151h