Comparing short protein substructures by a method based on backbone torsion angles

Proteins: Structure, Function and Bioinformatics - Tập 6 Số 2 - Trang 155-167 - 1989
Mary E. Karpen1, Pieter L. De Haseth1, Kenneth Neet1
1Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106.

Tóm tắt

AbstractAn efficient algorithm was characterized that determines the similarity in main chain conformation between short protein substructures. The algorithm computes Δt, the root mean square difference in ϕ and ψ torsion angles over a small number of amino acids (typically 3–5). Using this algorithm, large number of protein substrates comparisons were feasible. The parameter Δt was sensitive to variations in local protein conformation, and it correlates with Δr, the root mean square deviation in atomic coordinates. Values for Δt were obtained that define similarity thresholds, which determine whether two substructure are considered structurally similar. To set a lower bound on the similarity threshold, we estimated the component of Δt due to measurement noise fromcomparisons of independently refined coordinates of the same protein. A sample distribution of Δt from nonhomologous protein comparisons identified an upper bound on the similarity threshold, one that refrains from incorporating large numbers of nonmatching comparisons large numbers of nonmatching comparisons. Unlike methods based on Cα atoms alone, Δt was sensitive to rotations in the peptide plane, shown to occur in several proteins. Comparisons of homologus proteins by Δt showed that the active site torsion angles are highly conserved. The Δt method was applied to the α‐chain of human hemoglobin, where it readily demonstrated the local differences in the structures of different ligation states.

Từ khóa


Tài liệu tham khảo

10.1126/science.2837824

10.1126/science.3381086

10.1016/0022-2836(88)90103-9

10.1016/0167-4838(87)90017-3

10.1126/science.3775366

10.1016/0022-2836(84)90393-0

10.1002/j.1460-2075.1986.tb04287.x

10.1002/bip.360250813

Richardson J. S., 1987, Protein Engineering, 149

10.1107/S0567739479000279

10.1107/S0567739476001873

10.1016/0022-2836(79)90308-5

10.1016/0022-2836(73)90388-4

10.1016/0022-2836(80)90357-5

10.1002/bip.360240906

10.1016/0022-2836(76)90004-8

10.1107/S0108767384001239

10.1107/S0567739478001680

Bernstein F. C., 1977, The Protein Data Bank: A Mol, Biol., 112, 535

Andrews L. Williams G. Bernstein F.Program PHIPSI distributed with Brookhaven Protein Data Bank Coordinate tape 1979.

10.1143/JPSJ.32.1331

10.1016/S0065-3233(08)60520-3

10.1107/S0567739480001210

10.1016/S0022-2836(83)80216-2

10.1016/0022-2836(75)90160-6

10.1016/0022-2836(81)90186-8

10.1073/pnas.77.11.6371

10.1016/0022-2836(79)90332-2

Adman E. T., 1976, Structure of Peptococcus aerogenes ferredoxin, J. Biol. Chem., 251, 3801, 10.1016/S0021-9258(17)33415-4

10.1016/0022-2836(77)90031-6

10.1016/0022-2836(84)90472-8

10.1016/0022-2836(80)90308-3

10.1016/S0022-2836(83)80313-1

10.1107/S010876818300275X

10.1016/S0022-2836(84)80006-6

10.1016/0022-2836(87)90294-4

10.1016/0022-2836(81)90081-4

10.1016/S0022-2836(83)80064-3

10.1016/0022-2836(78)90368-6

10.1107/S0567740882008346

10.1021/bi00280a021

10.1107/S0108768186098063

10.1021/bi00329a038

10.1107/S0567739475001477

10.1107/S0567740879007925

Adman E. T., 1973, Structure of a bacterial ferredoxin, J. Biol. Chem., 248, 3987, 10.1016/S0021-9258(19)43829-5

10.1016/0022-2836(80)90289-2

10.1016/0022-2836(82)90334-5

10.1016/0022-2836(81)90529-5

10.1016/0022-2836(87)90633-4

10.1016/0022-2836(79)90277-8

Still C., 1988, MacroModel version 2.0

10.1016/0022-2836(80)90373-3