Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation

Journal of Applied Physics - Tập 88 Số 7 - Trang 3832-3839 - 2000
Yong Gyu Choi1, Kyong Hon Kim1, Seho Park2, Jong Heo2
1Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute, Yusong, P.O. Box 106, Taejon 305-600, Republic of Korea
2Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea

Tóm tắt

We have demonstrated that the population feeding from the I11/24 level to the 1.5 μm fluorescence emitting I13/24 level of Er3+ ions in low phonon energy glass hosts can be enhanced by codoping with Ce3+ under optical pumping at 980 nm. The nonradiative energy transfer Er3+: 4I11/2; Ce3+: 2F5/2→Er3+: 4I13/2; Ce3+: 2F7/2, occurs in the form of phonon-assisted energy transfer, and therefore the feeding rates are faster in the tellurite glasses, which have a comparatively higher phonon energy than in the sulfide glasses. The cross-relaxation process for I13/24: 4I13/2→4I15/2: 4I9/2, which lowers the population density of the I13/24 manifold and causes a deleterious effect in the 1.5 μm fluorescence intensity, is more severe in the sulfide glasses. Population feeding rate from the I11/24 to the I13/24 level is significantly enhanced by way of cerium codoping into tellurite glasses, which promises an efficient 980 nm pumped broadband Er3+-doped fiber amplifier.

Từ khóa


Tài liệu tham khảo

1991, J. Lightwave Technol., 9, 234, 10.1109/50.65882

1994, IEEE Photonics Technol. Lett., 6, 509, 10.1109/68.281811

1997, Electron. Lett., 33, 863, 10.1049/el:19970585

1998, Opt. Lett., 23, 274, 10.1364/OL.23.000274

1994, Opt. Mater., 3, 187, 10.1016/0925-3467(94)90004-3

1997, J. Non-Cryst. Solids, 217, 199, 10.1016/S0022-3093(97)00189-0

1998, OSA TOPS, 25, 82

1997, Phys. Rev. B, 56, 9302, 10.1103/PhysRevB.56.9302

1999, Electron. Lett., 35, 1765, 10.1049/el:19991155

1994, J. Opt. Soc. Am. B, 11, 961, 10.1364/JOSAB.11.000961

1997, Appl. Phys. Lett., 71, 43, 10.1063/1.119463

1998, Spectrochim. Acta A, 54, 1763, 10.1016/S1386-1425(98)00109-7

1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

1991, Appl. Opt., 30, 2546, 10.1364/AO.30.002546

1997, J. Appl. Phys., 81, 2940, 10.1063/1.364324

1970, Phys. Rev. B, 1, 2961, 10.1103/PhysRevB.1.2961

1997, Phys. Rev. B, 56, 14

1999, J. Am. Ceram. Soc., 82, 2762, 10.1111/j.1151-2916.1999.tb02153.x

1997, J. Appl. Phys., 82, 1, 10.1063/1.366265

1997, J. Non-Cryst. Solids, 208, 56