Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species
Tóm tắt
Reactive oxygen species (ROS) plays a major role in the pathology of male infertility. It is an independent biomarker of sperm function. Seminal plasma is a natural reservoir of antioxidants responsible for the nourishment, protection, capacitation, and motility of sperm within the female reproductive tract resulting in successful fertilization and implantation of the embryo. A comparative proteomic analysis of seminal plasma proteins from fertile men and infertile men with varying levels of ROS was carried out to identify signature proteins involved in ROS-mediated reproductive dysfunction. A total of 42 infertile men presenting with infertility and 17 proven fertile donors were enrolled in the study. ROS levels were measured in the seminal ejaculates by chemiluminescence assay. Infertile men were subdivided into Low ROS (0–<93 RLU/s/106 sperm; n = 11), Medium ROS (>93–500 RLU/s/106 sperm; n = 17) and High ROS (>500 RLU/s/106 sperm; n = 14) groups and compared with fertile men (4–50 RLU/s/106 sperm). 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. 1D gel electrophoresis followed by in-gel digestion and LC/MS–MS in a LTQ-Orbitrap Elite hybrid mass spectrometer system was used for proteome analysis. Identification of differentially expressed proteins (DEPs), their cellular localization and involvement in different pathways were examined utilizing bioinformatics tools. The results indicate that proteins involved in biomolecule metabolism, protein folding and protein degradation are differentially modulated in all three infertile patient groups in comparison to fertile controls. Membrane metallo-endopeptidase (MME) was uniformly overexpressed (>2 fold) in all infertile groups. Pathway involving 35 focus proteins in post-translational modification of proteins, protein folding (heat shock proteins, molecular chaperones) and developmental disorder was overexpressed in the High ROS group compared with fertile control group. MME was one of the key proteins in the pathway. FAM3D was uniquely expressed in fertile group. We have for the first time demonstrated the presence of 35 DEPs of a single pathway that may lead to impairment of sperm function in men with Low, Medium or High ROS levels by altering protein turn over. MME and FAM3D along with ROS levels in the seminal plasma may serve as good markers for diagnosis of male infertility.
Tài liệu tham khảo
Robertson SA. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 2005;322:43–52.
Fraser LR, Osiguwa OO. Human sperm responses to calcitonin, angiotensin II and fertilization-promoting peptide in prepared semen samples from normal donors and infertility patients. Hum Reprod. 2004;19:596–606.
Rando OJ. Daddy issues: paternal effects on phenotype. Cell. 2012;151:702–8.
Robertson SA, Seamark RF. Granulocyte macrophage colony stimulating factor (GM-CSF) in the murine reproductive tract: stimulation by seminal factors. Reprod Fertil Dev. 1990;2:359–68.
Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, et al. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod. 2011;85:397–408.
Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, et al. Seminal fluid drives expansion of the CD4+ CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009;80:1036–45.
Glander HJ, Kratzsch J, Weisbrich C, Birkenmeier G. Insulin-like growth factor-I and alpha 2-macroglobulin in seminal plasma correlate with semen quality. Hum Reprod. 1996;11:2454–60.
Wennemuth G, Schiemann PJ, Krause W, Gressner AM, Aumuller G. Influence of fibronectin on the motility of human spermatozoa. Int J Androl. 1997;20:10–6.
Irazusta J, Valdivia A, Fernandez D, Agirregoitia E, Ochoa C, et al. Enkephalin-degrading enzymes in normal and subfertile human semen. J Androl. 2004;25:733–9.
Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.
Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34:298–307.
Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15:411–21.
Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.
Agarwal A, Sharma RK, Nallella KP, Thomas AJ Jr, Alvarez JG, et al. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86:878–85.
MacLeod Ahmed AH, Allamaneni SS, Comhaire FH, Agarwal A. Relationship between acrosin activity of human spermatozoa and oxidative stress. Asian J Androl. 2004;6:313–8.
Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil. 1993;97:441–50.
Aitken RJ. A free radical theory of male infertility. Reprod Fertil Dev. 1994;6:19–23 discussion 23–14.
Pasqualotto FF, Sharma RK, Potts JM, Nelson DR, Thomas AJ, et al. Seminal oxidative stress in patients with chronic prostatitis. Urology. 2000;55:881–5.
Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28:529–36.
Deepinder F, Cocuzza M, Agarwal A. Should seminal oxidative stress measurement be offered routinely to men presenting for infertility evaluation? Endocr Pract. 2008;14:484–91.
Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102:1518–27.
Tremellen K. Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update. 2008;14:243–58.
Wang G, Guo Y, Zhou T, Shi X, Yu J, et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics. 2013;79:114–22.
Hamada A, Sharma R, du Plessis SS, Willard B, Yadav SP, et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99(1216–1226):e1212.
Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11:48.
Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol. 2013;11:85.
Ayaz A AA, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics 2015;12:4.
Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis. Mol Cell Endocrinol. 2004;216:31–9.
Aitken RJ. Possible redox regulation of sperm motility activation. J Androl. 2000;21:491–6.
Rhemrev JP, van Overveld FW, Haenen GR, Teerlink T, Bast A, et al. Quantification of the nonenzymatic fast and slow TRAP in a postaddition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J Androl. 2000;21:913–20.
Ws O, Chen H, Chow PH. Male genital tract antioxidant enzymes–their ability to preserve sperm DNA integrity. Mol Cell Endocrinol. 2006;250:80–3.
Organization WH. WHO laboratory manual for the examination and processingof human semen. In: Organization WH, editor. Geneva. Switzerland: WHO Press; 2010.
Kashou AH, Sharma R, Agarwal A. Assessment of oxidative stress in sperm and semen. Methods Mol Biol. 2013;927:351–61.
Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74:5383–92.
Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
Ashburner M. A biologist’s view of the Drosophila genome annotation assessment project. Genome Res. 2000;10:391–3.
Gokce E, Shuford CM, Franck WL, Dean RA, Muddiman DC. Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom. 2011;22:2199–208.
Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci USA. 2004;101:3833–8.
Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, Link AJ. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol. 2004;24:7249–59.
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006;5:2339–47.
Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–5.
Bhatia VN, Perlman DH, Costello CE, McComb ME. Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Anal Chem. 2009;81:9819–23.
Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.
Drabovich AP, Jarvi K, Diamandis EP. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol Cell Proteomics. 2011;10(M110):004127.
Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35:1–10.
Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R. Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod. 2003;69:1586–92.
Park KH, Kim BJ, Kang J, Nam TS, Lim JM, et al. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal. 2011;4:ra31.
Cross NL, Mahasreshti P. Prostasome fraction of human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist progesterone. Arch Androl. 1997;39:39–44.
Palmerini CA, Saccardi C, Carlini E, Fabiani R, Arienti G. Fusion of prostasomes to human spermatozoa stimulates the acrosome reaction. Fertil Steril. 2003;80:1181–4.
Babiker AA, Ronquist G, Nilsson UR, Nilsson B. Transfer of prostasomal CD59 to CD59-deficient red blood cells results in protection against complement-mediated hemolysis. Am J Reprod Immunol. 2002;47:183–92.
Kelly RW. Immunosuppressive mechanisms in semen: implications for contraception. Hum Reprod. 1995;10:1686–93.
Skibinski G, Kelly RW, Harkiss D, James K. Immunosuppression by human seminal plasma–extracellular organelles (prostasomes) modulate activity of phagocytic cells. Am J Reprod Immunol. 1992;28:97–103.
Jones JL, Saraswati S, Block AS, Lichti CF, Mahadevan M, et al. Galectin-3 is associated with prostasomes in human semen. Glycoconj J. 2010;27:227–36.
Tarazona R, Delgado E, Guarnizo MC, Roncero RG, Morgado S, et al. Human prostasomes express CD48 and interfere with NK cell function. Immunobiology. 2011;216:41–6.
Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105–11.
Rupik W, Jasik K, Bembenek J, Widlak W. The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comp Biochem Physiol A Mol Integr Physiol. 2011;159:349–66.
Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, et al. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356:248–52.
Bornstein P. Thrombospondins: structure and regulation of expression. Faseb j. 1992;6:3290–9.
Kuno K, Matsushima K. ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region. J Biol Chem. 1998;273:13912–7.
Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest. 2000;105:1345–52.
Yokoyama H, Wada T, Kobayashi K, Kuno K, Kurihara H, et al. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 null mutant mice develop renal lesions mimicking obstructive nephropathy. Nephrol Dial Transplant. 2002;17(Suppl 9):39–41.
Espey LL, Yoshioka S, Russell DL, Robker RL, Fujii S, et al. Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat. Biol Reprod. 2000;62:1090–5.
Robker RL, Russell DL, Espey LL, Lydon JP, O’Malley BW, et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA. 2000;97:4689–94.
Boerboom D, Russell DL, Richards JS, Sirois J. Regulation of transcripts encoding ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin-like motifs-1) and progesterone receptor by human chorionic gonadotropin in equine preovulatory follicles. J Mol Endocrinol. 2003;31:473–85.
Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem. 2003;278:42330–9.
Miller DJ, Winer MA, Ax RL. Heparin-binding proteins from seminal plasma bind to bovine spermatozoa and modulate capacitation by heparin. Biol Reprod. 1990;42:899–915.
Miller DJ, First NL, Ax RL. Isolation and characterization of seminal fluid proteins that bind heparin. Adv Exp Med Biol. 1987;219:597–601.
Fernandez D, Valdivia A, Irazusta J, Ochoa C, Casis L. Peptidase activities in human semen. Peptides. 2002;23:461–8.
Subiran N, Agirregoitia E, Valdivia A, Ochoa C, Casis L, et al. Expression of enkephalin-degrading enzymes in human semen and implications for sperm motility. Fertil Steril. 2008;89:1571–7.
Siems WE, Maul B, Wiesner B, Becker M, Walther T, et al. Effects of kinins on mammalian spermatozoa and the impact of peptidolytic enzymes. Andrologia. 2003;35:44–54.
Ravina CG, Seda M, Pinto FM, Orea A, Fernandez-Sanchez M, et al. A role for tachykinins in the regulation of human sperm motility. Hum Reprod. 2007;22:1617–25.
Zhu Y, Xu G, Patel A, McLaughlin MM, Silverman C, et al. Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics. 2002;80:144–50.