Comparative molecular cell-of-origin classification of diffuse large B-cell lymphoma based on liquid and tissue biopsies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Reddy A, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell [published online ahead of print: 2017]. https://doi.org/10.1016/j.cell.2017.09.027.
Xu P-P, et al. B-cell Function Gene Mutations in Diffuse Large B-cell Lymphoma: A Retrospective Cohort Study. EBioMed [published online ahead of print: 2017]. https://doi.org/10.1016/j.ebiom.2017.01.027.
Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature [published online ahead of print: 2000]. https://doi.org/10.1038/35000501.
Rosenwald A, et al. The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma. N Engl J Med. [published online ahead of print: 2002]. https://doi.org/10.1056/NEJMoa012914.
Wright G, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci. [published online ahead of print: 2003]. https://doi.org/10.1073/pnas.1732008100.
Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med. [published online ahead of print: 2001]. https://doi.org/10.1084/jem.194.12.1861.
Feuerhake F, et al. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood [published online ahead of print: 2005]. https://doi.org/10.1182/blood-2004-12-4901.
Rimsza LM, et al. Accurate classification of diffuse large B-cell lymphoma into germinal center and activated B-cell subtypes using a nuclease protection assay on formalin-fixed, paraffin-embedded tissues. Clin. Cancer Res. [published online ahead of print: 2011]. https://doi.org/10.1158/1078-0432.CCR-10-2573.
Linton K, et al. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma. J Mol Diagnostics JMD [published online ahead of print: 2012]. https://doi.org/10.1016/j.jmoldx.2012.01.008.
Barrans SL, et al. Whole genome expression profiling based on paraffin embedded tissue can be used to classify diffuse large B-cell lymphoma and predict clinical outcome. Br J Haematol. [published online ahead of print: 2012]. https://doi.org/10.1111/bjh.12045.
Care MA, et al. A Microarray Platform-Independent Classification Tool for Cell of Origin Class Allows Comparative Analysis of Gene Expression in Diffuse Large B-cell Lymphoma. PLoS One [published online ahead of print: 2013]. https://doi.org/10.1371/journal.pone.0055895.
Scott DW, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood [published online ahead of print: 2014]. https://doi.org/10.1182/blood-2013-11-536433.
Gutiérrez-García G, et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood [published online ahead of print: 2011]. https://doi.org/10.1182/blood-2010-12-322362.
Coutinho R, et al. Poor concordance among nine immunohistochemistry classifiers of cell-of-origin for diffuse large b-cell lymphoma: Implications for therapeutic strategies. Clin. Cancer Res. [published online ahead of print: 2013]. https://doi.org/10.1158/1078-0432.CCR-13-1482.
Meyer PN, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol. [published online ahead of print: 2011]. https://doi.org/10.1200/JCO.2010.30.0368.
Choi WWL, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin. Cancer Res. [published online ahead of print: 2009]. https://doi.org/10.1158/1078-0432.CCR-09-0113.
Xue X, Zeng N, Gao Z, Du M-Q. Diffuse large B-cell lymphoma: sub-classification by massive parallel quantitative RT-PCR. Lab. Invest. [published online ahead of print: 2015]. https://doi.org/10.1038/labinvest.2014.136.
Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science [published online ahead of print: 2002]. https://doi.org/10.1126/science.1067799.
Tordini F, Aldinucci M, Milanesi L, Liò P, Merelli I. The genome conformation as an integrator of multi-omic data: the example of damage spreading in cancer. Front Genet. 2016;7. https://doi.org/10.3389/fgene.2016.00194.
Cao F, et al. Super-enhancers and broad h3k4me3 domains form complex gene regulatory circuits involving chromatin interactions. Sci Rep. [published online ahead of print: 2017]. https://doi.org/10.1038/s41598-017-02257-3.
Bastonini E, et al. Chromatin barcodes as biomarkers for melanoma. Pigment Cell Melanoma Res. 2014;27(5):788–800.
Mukhopadhyay S, Ramadass AS, Akoulitchev A, Gordon S. Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. Int. Immunopharmacol [published online ahead of print: 2014]. https://doi.org/10.1016/j.intimp.2013.10.024.
Jakub JW, et al. A pilot study of chromosomal aberrations and epigenetic changes in peripheral blood samples to identify patients with melanoma. Melanoma Res. [published online ahead of print: 2015]. https://doi.org/10.1097/CMR.0000000000000182.
Carini C, et al. Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis. J Transl Med. 2018;16(1). https://doi.org/10.1186/s12967-018-1387-9.
Crutchley JL, Wang XQD, Ferraiuolo MA, Dostie J. Chromatin conformation signatures: ideal human disease biomarkers? Biomark Med. [published online ahead of print: 2010]. https://doi.org/10.2217/bmm.10.68.
Seymour JF, et al. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: Final MAIN study outcomes. Haematologica [published online ahead of print: 2014]. https://doi.org/10.3324/haematol.2013.100818.
Lenz G, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J. Med. [published online ahead of print: 2008]. https://doi.org/10.1056/NEJMoa0802885.
Pfeifer M, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia [published online ahead of print: 2015]. https://doi.org/10.1038/leu.2015.48.
Salter M, et al. Epigenetic signatures and early detection of neurodegenerative diseases. In: The Lancet Neurology Conference, The Lancet Neurology Conference; 2016.
Salter M, Powell R, Back J, et al. Genomic architecture differences at the HTT locus associated with symptomatic and pre-symptomatic cases of Huntington’s disease in a pilot study. F1000Research. 2019;7:1757. https://doi.org/10.12688/f1000research.15828.3.
Szklarczyk D, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. [published online ahead of print: 2017]. https://doi.org/10.1093/nar/gkw937.
Kanehisa M, Goto S. KEGG : Kyoto Encyclopedia of Genes and Genomes. Nucleic Acid Res. [published online ahead of print: 2000]. https://doi.org/10.1093/nar/28.1.27.
Ashburner M, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000. https://doi.org/10.1038/75556.
Carbon S, et al. Expansion of the gene ontology knowledgebase and resources: The gene ontology consortium. Nucleic Acids Res. [published online ahead of print: 2017]. https://doi.org/10.1093/nar/gkw1108.
R Development Core Team R. R: A Language and Environment for Statistical Computing. 2011.
Pasqualucci L. The genetic basis of diffuse large B-cell lymphoma. Curr Opin Hematol. 2013. https://doi.org/10.1097/MOH.0b013e3283623d7f.
Pasqualucci L, et al. Nat. Genet. [published online ahead of print: 2011]. https://doi.org/10.1038/ng.892.
Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma—treatment approaches in the molecular era. Nat Rev Clin Oncol. [published online ahead of print: 2013]. https://doi.org/10.1038/nrclinonc.2013.197.
Cerhan JR, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. [published online ahead of print: 2014]. https://doi.org/10.1038/ng.3105.
DLBCL GCB Gene List. http://atlasgeneticsoncology.org/Anomalies/DLBLGerminCenterID2147.html. cited.
Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology. 2018. https://doi.org/10.1016/j.pathol.2017.09.006.
Hans CP, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood [published online ahead of print: 2004]. https://doi.org/10.1182/blood-2003-05-1545.
Barton S, Hawkes EA, Wotherspoon A, Cunningham D. Are We Ready To Stratify Treatment for Diffuse Large B-Cell Lymphoma Using Molecular Hallmarks? Oncologist [published online ahead of print: 2012]. https://doi.org/10.1634/theoncologist.2012-0218.
Read JA, et al. Evaluating cell-of-origin subtype methods for predicting diffuse large B-Cell lymphoma survival: A meta-analysis of gene expression profiling and immunohistochemistry algorithms. Clin. Lymphoma, Myeloma Leuk. [published online ahead of print: 2014]. https://doi.org/10.1016/j.clml.2014.05.002.
Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive Nuclear Factor κB Activity Is Required for Survival of Activated B Cell–like Diffuse Large B Cell Lymphoma Cells. J Exp Med. [published online ahead of print: 2001]. https://doi.org/10.1084/jem.194.12.1861.
Compagno M, et al. Mutations of multiple genes cause deregulation of NF-B in diffuse large B-cell lymphoma. Nature [published online ahead of print: 2009]. https://doi.org/10.1038/nature07968.
Ngo VN, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature [published online ahead of print: 2011]. https://doi.org/10.1038/nature09671.
Liu Z, et al. Identification of Hub Genes and Key Pathways Associated with Two Subtypes of Diffuse Large B-Cell Lymphoma Based on Gene Expression Profiling via Integrated Bioinformatics. Biomed Res Int. [published online ahead of print: 2018]. https://doi.org/10.1155/2018/3574534.
Paul J, et al. Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT. Cancer Cell [published online ahead of print: 2017]. https://doi.org/10.1016/j.ccell.2016.12.003.
Zhang M, et al. RelA NF-kB subunit activation as a therapeutic target in diffuse large B-cell lymphoma. Aging (Albany). [published online ahead of print: 2016]. https://doi.org/10.18632/aging.101121.
Sun X, et al. DCZ3301, a novel cytotoxic agent, inhibits proliferation in diffuse large B-cell lymphoma via the STAT3 pathway. Cell Death Dis. [published online ahead of print: 2017]. https://doi.org/10.1038/cddis.2017.472.
Toader D, et al. Discovery of small molecule inhibitors of MAP3K7 (TAK1) that induce apoptosis of distinct subtypes of B-cell lymphoma cells. Am Assoc Cancer Res Annu Meet. 2008;68(9):1292.
Duncan R, Carpenter B, Main LC, Telfer C, Murray GI. Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer [published online ahead of print: 2008]. https://doi.org/10.1038/sj.bjc.6604128.
Song J, Shih I-M, Chan DW, Zhang Z. Suppression of Annexin A11 in Ovarian Cancer: Implications in Chemoresistance. Neoplasia [published online ahead of print: 2009]. https://doi.org/10.1593/neo.09286.
Hua K, et al. Downregulation of Annexin A11 (ANXA11) Inhibits Cell Proliferation, Invasion, and Migration via the AKT/GSK-3β Pathway in Gastric Cancer. Med Sci Monit. [published online ahead of print: 2018]. https://doi.org/10.12659/MSM.905372.
Chapuy B, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med [published online ahead of print: 2018]. https://doi.org/10.1038/s41591-018-0016-8.
Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323–34.
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019. https://doi.org/10.1186/s13045-019-0779-5.
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019. https://doi.org/10.1038/s41568-019-0116-x.
Shah P, et al. Development and validation of baseline predictive biomarkers for response to avelumab in second-line (2L) non-small cell lung cancer (NSCLC) using EpiSwitchTM epigenetic profiling. J. Immunother. Cancer. 2019;7(282):78.
Shah P, et al. Development and validation of baseline predictive biomarkers for response to immuno-checkpoint treatments in the context of multi-line and multi-therapy cohorts using EpiSwitch epigenetic profiling. J Immunother Cancer. 2019;7(282):78–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833189/.
Lu S, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.1549.
Crutchley JL, Wang XQD, Ferraiuolo M. A, Dostie J. chromatin conformation signatures: ideal human disease biomarkers?. Biomark. Med. 2010;4(4):611–29.
Diaz Blanco N, et al. Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. bioRxiv [published online ahead of print: 2018]. https://doi.org/10.1101/372789.
Nowakowski G, Chiappella A, Whitzig T, Gascoyne RD, Zhang L. Feasibility of real-time cell-of-origin subtype identification by gene expression profile in the phase 3 trial of lenalidomide plus R-CHOP vs placebo plus R-CHOP in patients with untreated ABC-type diffuse large B-cell lymphoma (ROBUST). J Clin Oncol. 2016;34(15):7538.