Comparative genomics of 11 complete chloroplast genomes of Senecioneae (Asteraceae) species: DNA barcodes and phylogenetics

Botanical Studies - Tập 60 - Trang 1-17 - 2019
Andrew Wanyoike Gichira1,2,3, Sheila Avoga1,2, Zhizhong Li1,2, Guangwan Hu3,4, Qingfeng Wang3,4, Jinming Chen1
1Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
2University of Chinese Academy of Sciences, Beijing, China
3Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
4Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China

Tóm tắt

Majority of the species within Senecioneae are classified in Senecio, making it the tribe’s largest genus. Certain intergeneric relationships within the tribe are vaguely defined, with the genus Senecio being partly linked to this ambiguity. Infrageneric relationships within Senecio remain largely unknown and consequently, the genus has undergone continuous expansion and contraction over the recent past due to addition and removal of taxa. Dendrosenecio, an endemic genus in Africa, is one of its segregate genera. To heighten the understanding of species divergence and phylogeny within the tribe, the complete chloroplast genomes of the first five Senecio and six Dendrosenecio species were sequenced and analyzed in this study. The entire length of the complete chloroplast genomes was ~ 150 kb and ~ 151 kb in Dendrosenecio and Senecio respectively. Characterization of the 11 chloroplast genomes revealed a significant degree of similarity particularly in their organization, gene content, repetitive sequence composition and patterns of codon usage. The chloroplast genomes encoded an equal number of unique genes out of which 80 were protein-coding genes, 30 transfer ribonucleic acid, and four ribosomal ribonucleic acid genes. Based on comparative sequence analyses, the level of divergence was lower in Dendrosenecio. A total of 331 and 340 microsatellites were detected in Senecio and Dendrosenecio, respectively. Out of which, 25 and five chloroplast microsatellites (cpSSR) were identified as potentially valuable molecular markers. Also, through whole chloroplast genome comparisons and DNA polymorphism tests, ten divergent hotspots were identified. Potential primers were designed creating genomic tools to further molecular studies within the tribe. Intergeneric relationships within the tribe were firmly resolved using genome-scale dataset in partitioned and unpartitioned schemes. Two main clades, corresponding to two subtribes within the Senecioneae, were formed with the genus Ligularia forming a single clade while the other had Dendrosenecio, Pericallis, Senecio and Jacobaea. A sister relationship was revealed between Dendrosenecio and Pericallis whereas Senecio, and Jacobaea were closely placed in a different clade. Besides emphasizing on the potential of chloroplast genome data in resolving intergeneric relationships within Senecioneae, this study provides genomic resources to facilitate species identification and phylogenetic reconstructions within the respective genera.

Tài liệu tham khảo

Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty220 Beentje HJ, Jeffrey C, Hind DJN (2005) Compositae (Part 3). In: Beentje HJ, Ghazanfar SA (eds) Flora of tropical east Africa. Royal Botanic Gardens, KEW, London, pp 547–869 Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. BioEssays 30:556–566. https://doi.org/10.1002/bies.20761 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421 Chen YL et al (2011) Senecioneae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21. Missouri Botanical Garden Press, Beijing, pp 371–544 Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560 Cheon K-S, Kim K-A, Yoo K-O (2017) The complete chloroplast genome sequences of three Adenophora species and comparative analysis with Campanuloid species (Campanulaceae). PLoS ONE 12:e0183652–e0183652. https://doi.org/10.1371/journal.pone.0183652 Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704 Dempewolf H et al (2010) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour. 10:1048–1058. https://doi.org/10.1111/j.1755-0998.2010.02859.x Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18. https://doi.org/10.1093/nar/gkw955 Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105. https://doi.org/10.1093/dnares/dsr002 Downie SR, Jansen RK (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot 40:336–351. https://doi.org/10.1600/036364415X686620 Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15 Eckardt NA (2006) Genomic Hopscotch: gene transfer from plastid to nucleus. Plant Cell 18:2865 Eckardt NA (2007) Chloroplast intron splicing mechanisms. Plant Cell 19:3838. https://doi.org/10.1105/tpc.108.191210 Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340 Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206 Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the Angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600. https://doi.org/10.1093/molbev/msq229 Guo S et al (2018) Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules. https://doi.org/10.3390/molecules23020246 Hedberg O (1957) Afroalpine vascular plants: a taxonomic revision. Symb Bot Upsal 15:1–411 Hegarty MJ, Abbott RJ, Hiscock SJ (2012) Allopolyploid speciation in action: the origins and evolution of Senecio cambrensis. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, pp 245–270. https://doi.org/10.1007/978-3-642-31442-1_13 Hildebrand M, Hallick RB, Passavant CW, Bourque DP (1988) Trans-splicing in chloroplasts: the rps 12 loci of Nicotiana tabacum. Proc Natl Acad Sci USA 85:372–376 Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer Netherlands, Dordrecht, pp 103–126. https://doi.org/10.1007/978-94-007-2920-9_5 Jeffrey C, Chen Y-l (1984) Taxonomic studies on the tribe Senecioneae (Compositae) of Eastern Asia. Kew Bull 39:205–446. https://doi.org/10.2307/4110124 Jeffrey C, Halliday P, Wilmot-Dear M, Jones SW (1977) Generic and sectional limits in Senecio (Compositae): I. Progress report. Kew Bull 32:47–67. https://doi.org/10.2307/4117259 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285 Kandziora M, Kadereit JW, Gehrke B (2016) Frequent colonization and little in situ speciation in Senecio in the tropical alpine-like islands of eastern Africa. Am J Bot 103:1483–1498. https://doi.org/10.3732/ajb.1600210 Kim K-J, Choi K-S, Jansen RK (2005) Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol Biol Evol 22:1783–1792. https://doi.org/10.1093/molbev/msi174 Knox EB (2005) Dendrosenecio. In: Beentje HJ, Jeffrey C, Hind DJN (eds) Flora of Tropical East Africa, Compositae (part 3). Kew, Royal Botanic Gardens, London Knox EB (2014) The dynamic history of plastid genomes in the Campanulaceae sensu lato; is unique among angiosperms. Proc Natl Acad Sci USA 111:11097. https://doi.org/10.1073/pnas.1403363111 Knox EB, Palmer JD (1995a) Chloroplast DNA variation and the recent radiation of the giant senecios (Asteraceae) on the tall mountains of eastern Africa. Proc Natl Acad Sci USA 92:10349–10353 Knox EB, Palmer JD (1995b) The origin of Dendrosenecio within the Senecioneae (Asteraceae) based on chloroplast DNA evidence. Am J Bot 82:1567–1573. https://doi.org/10.2307/2446185 Kumar S, Hahn FM, McMahan CM, Cornish K, Whalen MC (2009) Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines. BMC Plant Biol 9:131. https://doi.org/10.1186/1471-2229-9-131 Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260 Lee J, Lee H, Lee S-C, Sung SH, Kang JH, Lee TJ, Yang T-J (2016) The complete chloroplast genome sequence of Ligularia fischeri (Ledeb.) Turcz. (Asteraceae). Mitochondrial DNA Part B 1:4–5. https://doi.org/10.1080/23802359.2015.1137793 Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–245. https://doi.org/10.1093/nar/gkw290 Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. https://doi.org/10.1007/s00294-007-0161-y Lu J-M, Zhang N, Du X-Y, Wen J, Li D-Z (2015) Chloroplast phylogenomics resolves key relationships in ferns. J Syst Evol. 53:448–457. https://doi.org/10.1111/jse.12180 Lu C, Shen Q, Yang J, Wang B, Song C (2016) The complete chloroplast genome sequence of Safflower (Carthamus tinctorius L.). Mitochondrial DNA A DNA Mapp Seq Anal. 27:3351–3353. https://doi.org/10.3109/19401736.2015.1018217 Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ (2014) Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst Biol 63:933–950. https://doi.org/10.1093/sysbio/syu054 Mabberley DJ (1973) Evolution in the giant groundsels. Kew Bull 28:61–96. https://doi.org/10.2307/4117066 Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162. https://doi.org/10.1038/30234 Milton JJ (2009) Phylogenetic analyses and taxonomic studies of Senecioninae: southern African Senecio section Senecio. University of St Andrews, St Andrews Morton BR (1993) Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J Mol Evol 37:273–280. https://doi.org/10.1007/bf00175504 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300 Nie X et al (2012) Complete chloroplast genome sequence of a major invasive species, Crofton weed (Ageratina adenophora). PLoS ONE 7:e36869. https://doi.org/10.1371/journal.pone.0036869 Nie X, Deng P, Feng K, Liu P, Du X, You FM, Weining S (2014) Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol Biol Rep 32:828–840. https://doi.org/10.1007/s11105-013-0691-z Niu Z, Xue Q, Wang H, Xie X, Zhu S, Liu W, Ding X (2017) Mutational biases and GC-biased gene conversion affect GC content in the plastomes of Dendrobium genus. Int J Mol Sci 18:2307 Nordenstam B (1978) Taxonomic studies in the tribe Senecioneae (Compositae). Opera Bot Lund 44:1–84 Nordenstam B (2007) Tribe Senecioneae. In: Kadereit JW, Jeffrey C, Kubitzki K (eds) The families and genera of vascular plants, vol 8. Springer, Berlin, pp 208–241 Nordenstam B, Pelser PB, Kadereit JW, Watson LE (2009) Senecioneae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of composiate. International Association for Plant Taxonomy, Vienna Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92. https://doi.org/10.1038/301092a0 Pelser PB, Gravendeel B, van der Meijden R (2002) Tackling speciose genera: species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceae) based on plastid and nrDNA sequences. Am J Bot 89:929–939. https://doi.org/10.3732/ajb.89.6.929 Pelser PB, Veldkamp JF, van der Meijden R (2006) New combinations in Jacobaea Mill. (Asteraceae–Senecioneae). Compos Newsl 44:1–11 Pelser PB, Nordenstam B, Kadereit JW, Watson LE (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104. https://doi.org/10.2307/25065905 Plant AL, Gray JC (1988) Introns in chloroplast protein-coding genes of land plants photosynthesis. Research 16:23–39. https://doi.org/10.1007/bf00039484 Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J (2018) Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst Biol 56:67. https://doi.org/10.1093/sysbio/syy022 Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122. https://doi.org/10.1007/s00606-007-0608-0 Ronquist F et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029 Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248 Salih M, Majeský Ľ, Schwarzacher T, Gornall R, Heslop-Harrison P (2017) Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): identity and variation between three microspecies. PLoS ONE 12:e0168008. https://doi.org/10.1371/journal.pone.0168008 Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. https://doi.org/10.1093/nar/15.3.1281 Shaw J et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166. https://doi.org/10.3732/ajb.92.1.142 Shen X et al (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22:1330 Shinozaki K et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049 Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138 Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. https://doi.org/10.1007/s00122-002-1031-0 Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11. https://doi.org/10.1093/nar/gkx391 Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123. https://doi.org/10.1038/nrg1271 Tonti-Filippini J, Nevill PG, Dixon K, Small I (2017) What can we do with 1000 plastid genomes? Plant J. 90:808–818. https://doi.org/10.1111/tpj.13491 Uddin A (2017) Indices of codon usage bias. J Proteom Bioinform 10:e34. https://doi.org/10.4172/jpb.1000e34 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596 Vargas OM, Ortiz EM, Simpson BB (2017) Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol 214:1736–1750. https://doi.org/10.1111/nph.14530 Walker JF, Zanis MJ, Emery NC (2014) Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am J Bot 101:722–729. https://doi.org/10.3732/ajb.1400049 Walker JF, Jansen RK, Zanis MJ, Emery NC (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. Am J Bot 102:1751–1752. https://doi.org/10.3732/ajb.1500299 Wang M et al (2015) Comparative analysis of Asteraceae chloroplast genomes: structural organization, RNA editing and evolution. Plant Mol Biol Rep 33:1526–1538. https://doi.org/10.1007/s11105-015-0853-2 Wang B, Li M, Yuan Y (2019) The complete chloroplast genome of Pericallis hybrida (Asteridae). Mitochondrial DNA Part B 4:233–234. https://doi.org/10.1080/23802359.2018.1542999 Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297. https://doi.org/10.1007/s11103-011-9762-4 Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29. https://doi.org/10.1016/0378-1119(90)90491-9 Wu C-S, Chaw S-M, Huang Y-Y (2013) Chloroplast phylogenomics indicates that Ginkgo biloba is sister to Cycads. Genome Biol Evol 5:243–254. https://doi.org/10.1093/gbe/evt001 Wu M-l, Li Q, Xu J, Li X-w (2018) Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med 13:10. https://doi.org/10.1186/s13020-018-0164-2 Yurina NP, Sharapova LS, Odintsova MS (2017) Structure of plastid genomes of photosynthetic eukaryotes. Biochemistry 82:678–691. https://doi.org/10.1134/s0006297917060049 Zhang D, Gao F, Li WX, Jakovlić I, Zou H, Zhang J, Wang GT (2018) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. bioRxiv. https://doi.org/10.1101/489088