Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae

Immunological Reviews - Tập 198 Số 1 - Trang 127-148 - 2004
George K. Christophides1, Dina Vlachou1, Fotis C. Kafatos1
1European Molecular Biology Laboratory, Heidelberg, Germany

Tóm tắt

Summary:  In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best‐studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow‐up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial ‘smart sprays’ capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.

Từ khóa


Tài liệu tham khảo

10.1038/ni0202-121

10.1016/S0952-7915(02)00005-5

10.1126/science.298.5591.82

10.1046/j.1462-5822.2002.00229.x

10.1016/S0952-7915(00)00186-2

10.1046/j.1462-5822.2003.00252.x

10.1038/ni1102-1041

10.1093/emboj/19.22.6030

10.1073/pnas.97.21.11516

10.1016/S0020-7519(03)00112-7

10.1093/emboj/cdf664

10.1093/emboj/16.20.6114

10.1073/pnas.092274999

10.1093/emboj/17.21.6115

10.1073/pnas.94.21.11508

10.1073/pnas.95.10.5700

10.1016/S0960-9822(00)00569-8

10.1146/annurev.immunol.20.083001.084359

10.1126/science.1068883

10.1038/ni922

10.1074/jbc.C300184200

10.1074/jbc.R100016200

10.1073/pnas.92.23.10698

10.1016/S0952-7915(98)80026-5

10.1016/S0952-7915(99)80005-3

10.1086/374758

10.1016/S0145-305X(99)00015-4

10.1016/S0092-8674(00)80172-5

10.1073/pnas.221458698

10.1073/pnas.261573998

10.1016/S0952-7915(99)80009-0

10.1038/nature735

10.1126/science.1070216

10.1038/nature734

10.1016/S0092-8674(01)00267-7

10.1006/dbio.2001.0542

10.1046/j.1462-5822.2003.00302.x

10.2307/3284664

10.1126/science.1076181

10.1126/science.1077136

10.1126/science.1077061

Lee EC, 1998, Functional analysis of the fibrinogen‐related scabrous gene from Drosophila melanogaster identifies potential effector and stimulatory protein domains, Genetics, 150, 663, 10.1093/genetics/150.2.663

10.1242/dev.124.1.169

10.1016/S0145-305X(03)00121-6

10.1016/S0022-2836(03)00185-2

10.1074/jbc.271.23.13854

10.1038/414756a

10.1073/pnas.212301199

10.1073/pnas.97.25.13772

10.1074/jbc.M208900200

10.1073/pnas.93.15.7888

10.1074/jbc.M003934200

10.1073/pnas.180060997

10.1016/S0959-440X(99)00009-3

10.1111/j.1600-065X.1998.tb01185.x

10.1016/S0021-9258(18)98841-1

10.1074/jbc.273.16.9667

10.1038/nri1182

10.1093/glycob/9.10.979

10.1074/jbc.M112105200

10.1073/pnas.201523798

10.1073/pnas.94.16.8691

10.1078/0171-2985-00149

10.4269/ajtmh.1996.54.214

10.1016/S1286-4579(00)00297-5

10.1016/S0952-7915(01)00307-7

10.1016/S1286-4579(00)00296-3

10.1073/pnas.97.13.7136

10.4049/jimmunol.165.11.6406

10.1073/pnas.230096397

10.1074/jbc.273.9.4855

10.1016/S1074-7613(00)80410-0

10.1006/jmbi.1993.1580

10.1073/pnas.92.9.4056

10.1016/S1074-7613(01)00249-7

10.1016/S0092-8674(00)81610-4

10.1016/S0965-1748(99)00113-7

10.1093/oxfordjournals.jbchem.a021894

10.1126/science.1072391

10.1016/S0965-1748(03)00123-1

10.1016/S0021-9258(17)33954-6

10.1515/bchm.1997.378.3-4.283

10.1074/jbc.M309682200

10.1016/S1534-5807(02)00267-8

10.1093/emboj/cdf661

10.1126/science.285.5435.1917

10.1074/jbc.M208187200

10.1126/science.284.5418.1313

10.1016/S1534-5807(02)00325-8

10.1016/S1534-5807(03)00244-2

10.1146/annurev.immunol.21.120601.141126

10.1038/35021228

10.1042/BST0310648

ImlerJL ZhengL.Biology of Toll receptors: lessons from insects and mammals.J Leukoc Biol(in press).

10.1046/j.1365-2583.2003.00388.x

10.1038/ni955

10.1002/j.1460-2075.1996.tb00846.x

10.1093/embo-reports/kvd073

10.1074/jbc.C000341200

10.1016/S0960-9822(02)00873-4

10.1073/pnas.1035902100

10.1146/annurev.immunol.16.1.293

10.1038/sj.onc.1203482

10.1002/bies.10016

10.1073/pnas.97.21.11427

10.1093/emboj/18.4.959

10.1046/j.1365-2796.2003.01228.x

10.1073/pnas.94.21.11502

10.1038/292246a0

10.1074/jbc.M002998200

10.1016/S0965-1748(00)00141-7

10.1111/j.1365-2583.1996.tb00055.x

10.1016/S0965-1748(00)00143-0

10.1073/pnas.221466798

10.1006/expr.1998.4212

10.1093/embo-reports/kvf180

10.1016/0145-305X(95)00005-E

10.1016/S0965-1748(02)00030-9

10.1016/S0965-1748(97)00045-3

10.1046/j.1365-2583.1998.71047.x

10.1074/jbc.274.17.11727

10.1126/science.3532325

10.2307/3282053

10.1016/0145-305X(94)90002-7

10.1603/0022-2585-39.1.84

10.1126/science.276.5311.425

10.1073/pnas.082235599

10.1073/pnas.2036262100

10.1046/j.1365-2915.1999.00200.x

10.1007/s00418-002-0408-0

10.1603/0022-2585-39.1.61

10.1006/jipa.2000.4980

10.1073/pnas.97.12.6619

10.1146/annurev.immunol.17.1.593

10.1016/S1286-4579(03)00157-6

Qiu P, 1998, A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis, Development, 125, 1909–1920

10.1073/pnas.0436940100

10.1006/expr.1995.1074

10.1111/j.1365-2915.1989.tb00473.x

10.1046/j.1365-2583.1998.740375.x

10.1126/science.1073420

10.1159/000058838

10.1073/pnas.95.7.3743

10.1038/35016096

10.1046/j.0962-1075.2001.00299.x

10.1046/j.1365-2583.2002.00336.x

10.1126/science.298.5591.117

10.1126/science.1081453

10.1242/jeb.00609

10.1038/417452a

10.1074/jbc.M206647200

James AA, 1999, Controlling malaria transmission with genetically‐engineered, Plasmodium‐resistant mosquitoes: milestones in a model system, Parassitologia, 41, 461

10.1073/pnas.160258197

10.1242/jeb.00640

10.4269/ajtmh.2000.62.427

10.1073/pnas.0537347100

10.1126/science.1091769