Comparative analysis of the β transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1

Proteins: Structure, Function and Bioinformatics - Tập 13 Số 1 - Trang 41-56 - 1992
Robert J. Duronio1, Jeffrey I. Gordon1, Mark S. Boguski2
1Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
2National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894

Tóm tắt

AbstractWhile investigating the expression of the Saccharomyces cerevisiae myristoyl‐CoA:protein N‐myristoyltransferase gene (NMT: E.C. 2.3.1.97) by Northern blot analysis, we observed another RNA transcript whose expression resembled that of NMT1 during meiosis and was derived from a gene located <1 kb immediately upstream of NMT1. This new gene, designated PWP1 (for periodic tryptophan protein), is divergently transcribed from NMT1 and encodes a 576‐residue protein. Null mutants of PWP1 are viable, but their‐growth is severely retarded and steady‐state levels of several cellular proteins (including at least two proteins that label with exogenous [3H]myristic acid) are drastically reduced. New methods for database searching and assessing the statistical significance of sequence similarities identic PWP1 as a member of the β‐transducin protein superfamily. Two other previously unrecognized β‐transducin‐like proteins (S. cerevisiae MAKI1 and D. discoideum AAC3) were also identified, and an unexpectedly high degree of sequence homology was found between a Chlamydomonas β‐like polypeptide and the C12.3 gene of chickens. A systematic and quantitative comparative analysis resulted in classifying all β‐transducin‐like sequences into II nonorthologous families. Based on specific sequence attributes, however, not all β‐transducin‐like sequences are expected to be functionally similar, and quantitative criteria for inferring functional analogies are discussed. Possible roles of repetitive tryptophan residues in proteins are also considered. Published 1992 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.bi.56.070187.003151

10.1038/349117a0

Reed R. R., 1990, G Protein diversity and the regulation of signaling pathways, New Biol, 2, 957

10.1073/pnas.83.7.2162

10.1016/0022-2836(87)90646-2

10.1016/0092-8674(88)90134-1

10.1016/0092-8674(89)90249-3

10.1073/pnas.86.12.4594

10.1016/0092-8674(89)90930-6

10.1073/pnas.86.22.8778

10.1007/BF00259410

10.1016/0378-1119(91)90047-F

10.1146/annurev.bi.57.070188.000441

10.1021/bi00463a001

10.1073/pnas.85.23.8795

Kishore N., 1991, The substrate specificity of Saccharomyces cerevisiae Myristoyl‐CoA.:Protein N‐Myris‐toyltransferase, J. Biol. Chem., 266, 8835, 10.1016/S0021-9258(18)31523-0

Kobayashi K., 1987, Analysis of fatty acid composition of Candida species by gas‐liquid chromatography using a polar column, Microbios., 51, 37

10.1083/jcb.113.6.1313

10.1126/science.2644694

10.1016/0092-8674(87)90166-8

10.1016/0092-8674(87)90167-X

10.1128/MCB.8.6.2484

10.1073/pnas.85.13.4620

10.1073/pnas.87.3.1238

10.1016/0092-8674(91)90650-N

10.1093/nar/18.2.261

10.1073/pnas.83.9.2812

Rudnick D. A., 1990, Structural and functional studies of Saccharomyces cerevisiae myristoyl‐CoA:protein N‐myristoyltransferase produced in E. coli. Evidence for an acyl‐enzyme intermediate, J. Biol. Chem., 265, 13370, 10.1016/S0021-9258(19)38308-5

10.1093/genetics/122.1.19

10.1073/pnas.74.12.5463

Sherman F., 1986, Cold Spring Harbor

10.1016/0076-6879(83)01015-0

10.1016/S0022-2836(05)80360-2

Boguski M. S., 1991, Protein Engineering: A Practical Approach

10.1073/pnas.87.6.2264

States D. J., 1991, Sequence Analysis Primer

Dayhoff M. O., 1978, Atlas of Protein Sequence and Structure

10.1073/pnas.86.15.5698

10.1002/prot.340090304

10.1073/pnas.86.12.4412

10.1016/0022-2836(89)90234-9

10.1002/prot.340020206

10.1016/0167-4838(86)90131-7

10.1093/nar/18.2.261

10.1016/0014-4827(82)90067-2

10.1126/science.7280687

10.1016/0025-5564(86)90116-1

Pierce J. R., 1980, An Introduction to Information Theory: Symbols, Signals and Noise

10.1016/0076-6879(90)83026-6

10.1093/nar/19.suppl.2241

10.1128/MCB.10.1.217

10.1128/MCB.10.2.510

Icho T., 1988, The MAK11 protein is essential for cell growth and replication of M double‐stranded RNA and is apparently a membrane‐associated protein, J. Biol. Chem., 263, 1467, 10.1016/S0021-9258(19)57326-4

Kaneri‐lshii C., 1990, The tryp‐tophan cluster: A hypothetical structure of the DNA‐ binding domain of the myb protooncogene product, J. Biol. Chem., 265, 19990, 10.1016/S0021-9258(17)45472-X

10.1016/0092-8674(90)90745-Z

10.1016/0092-8674(90)90746-2

10.1038/336719a0

10.1038/342134a0

Kanei‐lshii C., 1990, The tryp‐tophan cluster: A hypothetical structure of the DNA‐binding domain of the myb protooncogene product, J. Biol. Chem., 265, 19990, 10.1016/S0021-9258(17)45472-X

Petorson‐Bjorn S., 1989, PRP4 (RNA4) from Saccharomyces cerevisiae: Its gene product is associated with the U4/U6 small nuclear ribo‐nucleoprotein particle, Mol. Cell. Biol., 9, 3698

10.1101/gad.4.7.1185

10.1128/MCB.10.3.1217

10.1101/gad.3.4.431

Merill B. M., 1988, Phenylalanines that are conserved among several RNA‐binding proteins form part of a nucleic acid‐binding pocket in the A1 heterogeneous nuclear ribonucle‐oprotein, J. Biol. Chem., 263, 3307, 10.1016/S0021-9258(18)69073-8

Johnston M., Sequences that regulate the divergent GAL1‐GAL10 promoter in Saccharomyces cerevisiae, Mol. Cell. Biol., 4, 1984

10.1128/MCB.7.10.3473

10.1093/nar/13.23.8587

10.1073/pnas.86.15.5718

10.1016/0092-8674(82)90211-2