Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures

Journal of Material Cycles and Waste Management - Tập 20 - Trang 1115-1127 - 2017
T. Bera1,2, T. J. Purakayastha1, A. K. Patra1,3, S. C. Datta1
1Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
2Horticultural Sciences Department, University of Florida, Gainesville, USA
3ICAR-Indian Institute of Soil Science, Bhopal, India

Tóm tắt

The objectives of this study were to assess the physicochemical, nutrient, and spectral properties of biochar prepared from four major agricultural residues of India [rice straw (RSB), wheat straw (WSB), maize stover (MSB), and pearl millet stover (PSB)] at three (400, 500, and 600 °C) pyrolysis temperatures. Pyrolysis temperatures and residue types profoundly influenced biochar properties, for instance, PSB biochar had the greatest pH (10.75 ± 0.01), calcium carbonate equivalent (CCE) (47.8 ± 0.5), and carbonate (CO 3 = ) content (432 ± 17 meq kg−1). Irrespective of residue, greater pyrolysis temperature improves the biochars’ acid-neutralizing capacity by increasing pH in water (pHw), CCE, and CO 3 =  content. The CCE of biochar showed a significant positive correlation with pHw (R 2 = 0.51, p < 0.001) and ash content of biochar (R 2 = 0.54, p < 0.001). A great amount of water-soluble potassium (20.6–29.5 g kg−1) in all the biochars made them suitable for supplying potassium to plants. Infrared spectroscopy explained the functional group formation, while XRD revealed mineral formation in the biochar. Thus, depending on the requirement, diverse properties of biochar can be prepared by designing residue type and pyrolysis temperature suitable for application in a specific soil to alleviate nutrient deficiency and improve soil productivity.

Tài liệu tham khảo

Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430. doi:10.4209/aaqr.2013.01.0031 Punia M, Nautiyal VP, Kant Y (2008) Identifying biomass burned patches of agriculture residue using satellite remote sensing data. Curr Sci 94:1185–1190 Gupta PK, Sahai S, Singh N, Dixit CK, Singh DP, Sharma C, Tiwari MK, Gupta RK, Garg SC (2004) Residue burning in rice–wheat cropping system: causes and implications. Curr Sci 87:1713–1717 Sarkar C, Kumar V, Sinha V (2013) Massive emissions of carcinogenic benzenoids from paddy residue burning in North India. Curr Sci 104:1703–1709 Spokas KA, Cantrell KB, Novak JM et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. doi:10.2134/jeq2011.0069 Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. doi:10.1021/es903140c Woolf D, Amonette JE, Street-Perrott A et al (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. doi:10.1038/ncomms1053 Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4 Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil, 1st edn. Adv Agron. doi:10.1016/S0065-2113(10)05002-9 Asai H, Samson BK, Stephan HM et al (2009) Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84. doi:10.1016/j.fcr.2008.10.008 Purakayastha TJ, Kumari S, Pathak H (2015) Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239–240:293–303. doi:10.1016/j.geoderma.2014.11.009 Steiner C, Teixeira WG, Lehmann J et al (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290. doi:10.1007/s11104-007-9193-9 Van Zwieten L, Kimber S, Downie A et al (2010) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Aust J Soil Res 48:569–576. doi:10.1071/SR10003 Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022 Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20. doi:10.1007/s11104-007-9391-5 Jin H (2010) Characterizaiton of microbial life colonizing biochar and biochar-amended soils. BMC Biochem. doi:10.1017/CBO9781107415324.004 Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417. doi:10.1007/s11104-012-1429-7 Bera T, Collins HP, Alva AK et al (2016) Biochar and manure effluent effects on soil biochemical properties under corn production. Appl Soil Ecol 107:360–367. doi:10.1016/j.apsoil.2016.07.011 Jones DL, Rousk J, Edwards-Jones G et al (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012 Laird DA, Fleming P, Davis DD et al (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi:10.1016/j.geoderma.2010.05.013 Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. doi:10.1021/ie0207919 Cheng CH, Lehmann J, Thies JE et al (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. doi:10.1016/j.orggeochem.2006.06.022 AOAC (1999) Official methods of analysis of the Association of Official Analytical Chemists, 16th edn. Association of Official Analytical Chemists, Arlington Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi:10.1016/j.biortech.2010.11.018 Veihmeyer FJ, Hendrickson AH (1948) Soil density and root penetration. Soil Sci 65:487–493 Hernandez-Mena LE, Pecora AAB, Beraldo AL (2014) Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng Trans 37:115–120. doi:10.3303/CET1437020 Keen BA, Raczkowski H (1921) The relation between the clay content and certain physical properties of a soil. J Agric Sci 11:441–449 Enders A, Hanley K, Whitman T et al (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi:10.1016/j.biortech.2012.03.022 Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255. doi:10.1016/j.geoderma.2011.04.021 ASTM (1990) D1762-84, standard method for chemical analysis of wood charcoal. ASTM International, Philadelphia Bera T, Purakayastha TJ, Patra AK (2014) Spectral, chemical and physical characterisation of mustard stalk biochar as affected by temperature. Clay Res 33:36–45 Amonette JE, Jospeh S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 33–43 Fidel RB, Laird D, Thompson AML (2013) Evaluation of modified Boehm titration methods for use with biochars. J Environ Qual 42:1771–1778. doi:10.2134/jeq2013.07.0285 Wu W, Yang M, Feng Q et al (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg 47:268–276. doi:10.1016/j.biombioe.2012.09.034 Lee Y, Park J, Ryu C et al (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201. doi:10.1016/j.biortech.2013.08.135 Lesch SM, Corwin DL, Robinson DA (2005) Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Comput Electron Agric 46:351–378. doi:10.1016/j.compag.2004.11.007 Sposito G (1989) The chemistry of soil. Oxford University Press, New York Zhao L, Cao X, Wang Q et al (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42:545–552. doi:10.2134/jeq2012.0232 Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. doi:10.1016/j.jaap.2011.11.018 Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Cellulose char structure: a combined analytical Py–GC–MS, FTIR, and NMR study. Carbohydr Res 262:27–47. doi:10.1016/0008-6215(94)84003-2 Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood, New York Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4:312–323. doi:10.1007/s12155-011-9133-7 Keiluweit M, Nico PS, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. doi:10.1021/es9031419 Cely P, Gascó G, Paz-Ferreiro J, Méndez A (2015) Agronomic properties of biochars from different manure wastes. J Anal Appl Pyrolysis 111:173–182. doi:10.1016/j.jaap.2014.11.014 Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. doi:10.1111/gcbb.12018 Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. doi:10.1016/j.biortech.2011.11.084 Zheng R, Chen Z, Cai C et al (2013) Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources 8:5965–5982. doi:10.15376/biores.8.4.5965-5982 Rehrah D, Bansode RR, Hassan O, Ahmedna M (2015) Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J Anal Appl Pyrolysis. doi:10.1016/j.jaap.2015.12.022 Pavia DL, Lampman GM, Kriz GS (1979) Introduction to spectroscopy: a guide for students of organic chemistry. Saunders Golden Sunburst Series, Philadelphia Kloss S, Zehetner F, Dellantonio A et al (2011) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. doi:10.2134/jeq2011.0070 Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi:10.1016/j.biortech.2010.02.052