Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities

Agnieszka Szopa1, Adam Kokotkiewicz2, Paweł Kubica1, Piotr Banaszczak3, Agnieszka Wojtanowska-Krośniak4, Mirosław Krośniak4, Urszula Marzec-Wróblewska5, Anna Badura5, Paweł Zagrodzki4,6, Adam Buciński5, Maria Łuczkiewicz2, Halina Ekiert1
1Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
2Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
3Rogów Arboretum, Forest Experimental Station, Warsaw University of Life Sciences, Rogów, Poland
4Department of Food Chemistry and Nutrition, Jagiellonian University, Medical College, Kraków, Poland
5Department of Biopharmacy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
6Department of Nuclear Physical Chemistry, Institute of Nuclear Physics, Kraków, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Do Thi N, Hwang ES (2014) Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Preventive Nutrition and Food. Science 19:204–212. doi: 10.3746/pnf.2014.19.3.204

Denev PN, Kratchanov CG, Ciz M et al (2012) Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: a review. Compr Rev Food Sci Food Saf 11:471–489. doi: 10.1111/j.1541-4337.2012.00198.x

Kim B, Ku CS, Pham TX et al (2013) Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr Res 33:406–413. doi: 10.1016/j.nutres.2013.03.001

Zapolska-Downar D, Bryk D, Małecki M et al (2012) Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. Eur J Nutr 51:563–572. doi: 10.1007/s00394-011-0240-1

Valcheva-Kuzmanova S, Belcheva A (2006) Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med 48:11–17

Gasiorowski K, Szyba K, Brokos B et al (1997) Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett 119:37–46

Ho GTT, Bräunlich M, Austarheim I et al (2014) Immunomodulating activity of Aronia melanocarpa polyphenols. Int J Mol Sci 15:11626–11636. doi: 10.3390/ijms150711626

Zhao C, Giusti MM, Malik M et al (2004) Effects of commercial anthocyanin-rich on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem 52:6122–6128. doi: 10.1021/jf049517a

Olas B, Kedzierska M, Wachowicz B et al (2010) Effects of polyphenol-rich extract from berries of Aronia melanocarpa on the markers of oxidative stress and blood platelet activation. Platelets 21:274–281. doi: 10.3109/09537101003612821

Malinowska J, Babicz K, Olas B et al (2012) Aronia melanocarpa extract suppresses the biotoxicity of homocysteine and its metabolite on the hemostatic activity of fibrinogen and plasma. Nutrition 28:793–798. doi: 10.1016/j.nut.2011.10.012

Sikora J, Markowicz-Piasecka M, Broncel M, Mikiciuk-Olasik E (2014) Extract of Aronia melanocarpa-modified hemostasis: in vitro studies. Eur J Nutr 53:1493–1502. doi: 10.1007/s00394-014-0653-8

Told R, Schmidl D, Palkovits S et al (2015) Antioxidative capacity of a dietary supplement on retinal hemodynamic function in a human lipopolysaccharide (LPS) model. Invest Ophthalmol Vis Sci 56:403–411. doi: 10.1167/iovs.14-15581

Taheri R, Connolly BA, Brand MH, Bolling BW (2013) Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J Agric Food Chem 61:8581–8588. doi: 10.1021/jf402449q

Slimestad R, Torskangerpoll K, Nateland HS et al (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compos Anal 18:61–68. doi: 10.1016/j.jfca.2003.12.003

Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects. Planta Med 74:1625–1634. doi: 10.1055/s-0028-1088306

Wilkes K, Howard LR, Brownmiller C, Prior RL (2014) Changes in chokeberry (Aronia melanocarpa L.) polyphenols during juice processing and storage. J Agric Food Chem 62:4018–4025. doi: 10.1021/jf404281n

Celka Z, Szkudlarz P (2010) Spontaneous occurrence and dispersion of Aronia x prunifolia [Marshall] rehder [Rosaceae] in Poland on the example of the “Bagna” bog complex near Chlebowo [western Poland]. Acta Societatis Botanicorum Poloniae 79:37–42

Brand MH (2010) Aronia: Native shrubs with untapped potential. Aroldia 67:14–25

Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food 13:255–269. doi: 10.1089/jmf.2009.0062

Persson Hovmalm H, Jeppsson N, Bartish I, Nybom H (2005) RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas 141:301–312. doi: 10.1111/j.1601-5223.2004.01772.x

Šnebergrová J, Čížková H, Neradová E et al (2014) Variability of characteristic components of Aronia. Czech J Food Sci 32:25–30

Tian Y, Liimatainen J, Alanne AL et al (2017) Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 220:266–281. doi: 10.1016/j.foodchem.2016.09.145

Lee JE, Kim GS, Park S et al (2014) Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: overall contribution to antioxidant activity. Food Chem 146:1–5. doi: 10.1016/j.foodchem.2013.09.029

Bednarek A (1993) Klimat [Climate]. In: Zielony R (ed) Warunki przyrodnicze lasów doświadczalnych SGGW w Rogowie [The natural conditions of experimental forest of SGGW Rogow] (in Polish). SGGW, Warszawa, pp 24–41

Wangensteen H, Bräunlich M, Nikolic V et al (2014) Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. J Funct Foods 7:746–752. doi: 10.1016/j.jff.2014.02.006

Teleszko M, Wojdyło A (2015) Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J Funct Foods 14:736–746. doi: 10.1016/j.jff.2015.02.041

Nakajima J-I, Tanaka I, Seo S et al (2004) LC/PDA/ESI-MS Profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotechnol 2004:241–247. doi: 10.1155/S1110724304404045

Ellnain-Wojtaszek M, Zgorka G (1999) High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chromatogr Related Technol 22:1457–1471. doi: 10.1081/JLC-100101744

Szopa A, Ekiert H (2014) Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regul 72:51–58. doi: 10.1007/s10725-013-9835-2

Waterhouse A (2002) Determination of total phenolics. In: Wrolstad RE, Acree TE, Decker EA et al (eds) Current protocols in food analytical chemistry, John Wiley and Sons, Inc., Hoboken, pp I1.1–I1.1.8

Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio.1996.0292

Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. doi: 10.1016/S0023-6438(95)80008-5

Wu X, Gu L, Prior RL et al (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 5:7846–7856. doi: 10.1155/S1110724304404045

Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028. doi: 10.1080/10715760600758522

Lavania UC (2005) Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet Resour 3:170–177. doi: 10.1079/PGR200576

Jakobek L, Drenjančeví M, Jukí CV, Seruga M (2012) Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Sci Hortic 147:56–63. doi: 10.1016/j.scienta.2012.09.006

Jeppsson N, Johansson R (2000) Changes in fruit quality in black chokeberry (Aronia melanocarpa) during maturation. J Hortic Sci Biotechnol 75:340–345. doi: 10.1080/14620316.2000.11511247

Jeppsson N (2000) The effects of fertilizer rate on vegetative growth, yield and fruit quality, with special respect to pigments, in black chokeberry (Aronia melanocarpa) cv. “Viking”. Sci Hortic 83:127–137. doi: 10.1016/S0304-4238(99)00070-9

Samoticha J, Wojdy A, Lech K (2016) The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT Food Sci Technol 66:484–489. doi: 10.1016/j.lwt.2015.10.073

Ćujić N, Šavikin K, Jankovic T et al (2016) Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem 194:135–142. doi: 10.1016/j.foodchem.2015.08.008

Ellnain-Wojtaszek M, Kruczyński Z, Kasprzak J (2001) Analysis of the content of flavonoids, phenolic acids as well as free radicals from Ginkgo biloba L. leaves during the vegetative cycle. Acta Pol Pharm 3:205–209

Borowska S, Brzóska MM (2016) Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf 15:982–1017. doi: 10.1111/1541-4337.12221

Pirvu L, Panteli M, Rasit I, et al (2015) The Leaves of Aronia melanocarpa L. and Hippophae rhamnoides L. as source of active ingredients for biopharmaceutical engineering. Agric Agric Sci Proc 6:593–600. doi: 10.1016/j.aaspro.2015.08.095

Ito H, Yamada Y, Kim TH, Yoshida T (2005) Polyphenols from the leaves of Aronia melanocarpa. Nat Med 59:52–52

Szopa A, Ekiert H (2012) In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine)—a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 166:1941–1948. doi: 10.1007/s12010-012-9622-y

Szopa A, Kokotkiewicz A, Bednarz M et al (2016) Studies on the accumulation of phenolic acids and flavonoids in different in vitro culture systems of Schisandra chinensis (Turcz.) Baill. using a DAD-HPLC method. Phytochem Lett. doi: 10.1016/j.phytol.2016.10.016

Gorinstein S, Vargas OJM, Jaramillo NO et al (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225:321–328. doi: 10.1007/s00217-006-0417-7

Campbell CS, Evans RC, Morgan DR et al (2007) Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Syst Evol 266:119–145. doi: 10.1007/s00606-007-0545-y

Liu Y, Liu X, Zhong F et al (2011) Comparative study of phenolic compounds and antioxidant activity in different species of cherries. J Food Sci 76:C633–C638. doi: 10.1111/j.1750-3841.2011.02150.x

Dujmović Purgar D, Duralija B, Voća S et al (2012) A comparison of fruit chemical characteristics of two wild grown Rubus species from different locations of Croatia. Molecules 17:10390–10398. doi: 10.3390/molecules170910390