Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium

Applied and Environmental Microbiology - Tập 76 Số 11 - Trang 3599-3610 - 2010
Amber Vanden Wymelenberg1, Jill Gaskell2, Michael D. Mozuch2, Grzegorz Sabat3, John Ralph4, Oleksandr Skyba5, Shawn D. Mansfield5, Robert A. Blanchette6, Diego Martínez7, Igor V. Grigoriev8, Philip J. Kersten2, Dan Cullen2
1Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706,
2USDA, Forest Service, Forest Products Laboratory, Madison, Wisconsin, 53726
3Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
4Department of Biochemistry and Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53726
5Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
6Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108
7Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131
8Department of Energy Joint Genome Institute, Walnut Creek, California 94598

Tóm tắt

ABSTRACT Cellulose degradation by brown rot fungi, such as Postia placenta , is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium . To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta , these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.

Từ khóa


Tài liệu tham khảo

Abbas, A., H. Koc, F. Liu, and M. Tien. 2004. Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet.47:49-56.

10.1111/j.1574-6976.2008.00106.x

Bao, W., E. Lymar, and V. Renganathan. 1994. Optimization of cellobiose dehydrogenase and β-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Biochem. Biotechnol.42:642-646.

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B57:289-300.

10.1017/S1477200005001623

10.1006/jmbi.1998.2144

10.1038/ng1201-365

10.1016/0014-5793(79)81216-8

10.1093/nar/gkn663

10.1016/S0014-5793(02)03589-5

10.1128/AEM.70.1.324-331.2004

10.1128/AEM.00977-07

10.1271/bbb.90486

10.1007/s00203-008-0434-y

Microbial and enzymatic degradation of wood and wood components. 1990

10.1128/AEM.02137-08

Goodell, B. 2003. Brown rot fungal degradation of wood: our evolving view, p. 97-118. In B. Goodell, D. Nicholas, and T. Schultz (ed.), Wood deterioration and preservation. American Chemical Society, Washington, DC.

10.1006/abbi.1996.9834

10.1046/j.1432-1327.1999.00011.x

10.1016/j.mycres.2007.03.004

10.1080/10635150151125879

10.1016/0014-5793(94)00847-7

Highley, T. L. 1973. Influence of carbon source on cellulase activity of white rot and brown rot fungi. Wood Fiber5:50-58.

10.1111/j.1742-4658.2006.05247.x

10.1515/HF.2004.066

10.1093/biostatistics/4.2.249

10.1128/AEM.67.6.2705-2711.2001

10.1007/s12275-008-0275-z

10.1007/s10086-004-0641-3

10.1016/j.jmb.2008.08.016

10.1073/pnas.87.8.2936

10.1128/jb.169.5.2195-2201.1987

10.1146/annurev.mi.41.100187.002341

10.1099/mic.0.27072-0

10.1021/ac000497v

10.1073/pnas.0809575106

10.1038/nbt967

10.1007/s00253-007-0850-y

10.1021/ac0341261

10.1007/s10532-007-9161-3

10.1007/s00253-008-1596-x

10.1128/jb.176.16.4838-4844.1994

10.1007/s00294-009-0243-0

10.1099/mic.0.2006/000513-0

10.1002/pmic.200401251

10.1515/HF.2004.047

10.1016/0022-2836(81)90087-5

Stat. Appl. Genet. Mol. Biol. 2004 3

10.1016/j.jbiotec.2006.12.010

10.1073/pnas.81.8.2280

10.1016/0168-1656(91)90267-Y

10.1128/AEM.00314-09

10.1016/j.fgb.2006.01.003

10.1016/j.jbiotec.2005.03.010

10.1128/AEM.00375-06

10.1016/S0021-9258(18)35893-9

10.1080/00275514.1997.12026772

10.1016/S0168-1656(00)00430-2

10.1111/j.1462-2920.2008.01605.x

10.1128/AEM.71.8.4548-4555.2005