Cơ chế chung và riêng biệt dẫn đến đau mãn tính và cảm giác ngứa: độ nhạy cảm ngoại biên và trung ương

Pflügers Archiv - Tập 473 - Trang 1603-1615 - 2021
Chengjin Li1, Hee Jin Kim2, Seung Keun Back3, Heung Sik Na4
1Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang, China
2Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju, Korea
3Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
4Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, Korea

Tóm tắt

Thông thường, có một sự đối kháng rõ rệt giữa đau và ngứa. Trong các điều kiện bình thường, các kích thích đau ức chế cảm giác ngứa, trong khi các thuốc giảm đau thường gây ra cảm giác ngứa. Mặc dù đau và ngứa được trung gian hóa bằng các đường dẫn riêng biệt trong các điều kiện bình thường, hầu hết các hóa chất không đặc hiệu cao cho một cảm giác nào đó trong các tình trạng bệnh lý mãn tính. Đặc biệt, ở những bệnh nhân bị đau thần kinh, histamine chủ yếu gây ra đau hơn là ngứa, trong khi ở những bệnh nhân bị viêm da dị ứng, bradykinin gây ra ngứa hơn là đau. Do đó, việc gãi lặp đi lặp lại thậm chí còn làm tăng cảm giác ngứa trong các tình trạng ngứa mãn tính. Bác sĩ thường kê thuốc giảm đau cho bệnh nhân bị ngứa mãn tính, cho thấy những cơ chế chung tiềm ẩn giữa đau mãn tính và ngứa, đặc biệt là độ nhạy cảm ngoại biên và trung ương. Thay vì tách biệt ngứa và đau, các nghiên cứu nên điều tra mối quan hệ giữa ngứa mãn tính và đau, bao gồm cả các tình trạng thần kinh và viêm. Ở đây, chúng tôi đã tổng hợp lại những nghiên cứu về độ nhạy cảm mãn tính dẫn đến đau và ngứa mãn tính ở cả hai cấp độ ngoại biên và trung ương. Các nghiên cứu về mối liên hệ giữa đau và ngứa sẽ tạo điều kiện cho sự phát triển các liệu pháp mới chống lại cả hai loại cảm giác khó chịu mãn tính dựa trên sinh lý bệnh tiềm tàng.

Từ khóa

#đau mãn tính #cảm giác ngứa #độ nhạy cảm ngoại biên #độ nhạy cảm trung ương #sinh lý bệnh

Tài liệu tham khảo

Abadia Molina F et al (1992) Increased sensory neuropeptides in nodular prurigo: a quantitative immunohistochemical analysis. Br J Dermatol 127(4):344–351 Akaishi S, Ogawa R, Hyakusoku H (2008) Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses 71(1):32–38 Akiyama T et al (2016) Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 136(1):154–160 Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151(2):378–383 Andersen HH et al (2017) Antipruritic effect of pretreatment with topical capsaicin 8% on histamine- and cowhage-evoked itch in healthy volunteers: a randomized, vehicle-controlled, proof-of-concept trial. Br J Dermatol 177(1):107–116 Andersen HH, Arendt-Nielsen L, Gazerani P (2016) Glial cells are involved in itch processing. Acta Derm Venereol 96(6):723–727 Andersen HH, Elberling J, Arendt-Nielsen L (2015) Human surrogate models of histaminergic and non-histaminergic itch. Acta Derm Venereol 95(7):771–777 Andersen HH, Yosipovitch G, Galor A (2017) Neuropathic symptoms of the ocular surface: dryness, pain, and itch. Curr Opin Allergy Clin Immunol 17(5):373–381 Andreev YA, Vassilevski AA, Kozlov SA (2012) Molecules to selectively target receptors for treatment of pain and neurogenic inflammation. Recent Pat Inflamm Allergy Drug Discov 6(1):35–45 Arndt J, Smith N, Tausk F (2008) Stress and atopic dermatitis. Curr Allergy Asthma Rep 8(4):312–317 Atanassoff PG et al (1999) Enhancement of experimental pruritus and mechanically evoked dysesthesiae with local anesthesia. Somatosens Mot Res 16(4):291–298 Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129(9):2312–2315 Azim AAA et al (2015) Role of Interleukin-2 in uremic pruritus among attendants of al-zahraa hospital dialysis unit. Indian J Dermatol 60(2):211–211 Barcena de Arellano ML et al (2011) Influence of nerve growth factor in endometriosis-associated symptoms. Reprod Sci 18(12):1202–10 Baron R et al (2001) Histamine-induced itch converts into pain in neuropathic hyperalgesia. NeuroReport 12(16):3475–3478 Barry DM, Munanairi A, Chen ZF (2018) Spinal mechanisms of itch transmission. Neurosci Bull 34(1):156–164 Basbaum AI et al (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284 Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200 Billeter AT et al (2015) TRPA1 mediates the effects of hypothermia on the monocyte inflammatory response. Surgery 158(3):646–654 Binshtok AM et al (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28(52):14062–14073 Birklein F et al (1997) Effects of cutaneous histamine application in patients with sympathetic reflex dystrophy. Muscle Nerve 20(11):1389–1395 Black JA et al (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82 Boillat A, Alijevic O, Kellenberger S (2014) Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Mol Cell Neurosci 61:13–22 Brodal P (2005) The neurobiology of pain. Tidsskr Nor Laegeforen 125(17):2370–2373 Brull SJ et al (1999) Attenuation of experimental pruritus and mechanically evoked dysesthesiae in an area of cutaneous allodynia. Somatosens Mot Res 16(4):299–303 Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642 Carstens E (2008) Scratching the brain to understand neuropathic itch. J Pain 9(11):973–974 Chevalier X, Eymard F, Richette P (2013) Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol 9(7):400–410 Costa A et al (2014) Neuromodulatory and anti-inflammatory ingredient for sensitive skin: in vitro assessment. Inflamm Allergy Drug Targets 13(3):191–198 Dai Y et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117(7):1979–1987 Devigili G et al (2014) Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 155(9):1702–7 Dey DD, Landrum O, Oaklander AL (2005) Central neuropathic itch from spinal-cord cavernous hemangioma: a human case, a possible animal model, and hypotheses about pathogenesis. Pain 113(1–2):233–237 Dhand A, Aminoff MJ (2014) The neurology of itch. Brain 137(Pt 2):313–322 Dillon SR et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5(7):752–760 Diogenes A, Akopian AN, Hargreaves KM (2007) NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 86(6):550–555 Dou YC et al (2006) Increased nerve growth factor and its receptors in atopic dermatitis: an immunohistochemical study. Arch Dermatol Res 298(1):31–37 Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21(5):592–598 Elkersh MA et al (2003) Epidural clonidine relieves intractable neuropathic itch associated with herpes zoster-related pain. Reg Anesth Pain Med 28(4):344–346 Ezzat MH, Hasan ZE, Shaheen KY (2011) Serum measurement of interleukin-31 (IL-31) in paediatric atopic dermatitis: elevated levels correlate with severity scoring. J Eur Acad Dermatol Venereol 25(3):334–339 Gao YJ et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29(13):4096–4108 Gao YJ et al (2010) The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148(2):309–319 Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126(1):56–68 Gonzales AJ et al (2013) Interleukin-31: its role in canine pruritus and naturally occurring canine atopic dermatitis. Vet Dermatol 24(1):48-53.e11–2 Gosselin RD et al (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95(4):1023–1034 Gouin O et al (2015) Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol 24(10):723–726 Gouin O et al (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8(9):644–661 Grace PM et al (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14(4):217–231 Green AD et al (2006) Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain 124(1–2):50–58 Green D, Dong X (2015) Supporting itch: a new role for astrocytes in chronic itch. Nat Med 21(8):841–842 Grewe M et al (2000) Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Invest Dermatol 114(6):1108–1112 Groneberg DA et al (2005) Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1. J Neuroimmunol 161(1–2):87–92 Halvorson KG et al (2005) A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res 65(20):9426–9435 Han L, Dong X (2014) Itch mechanisms and circuits. Annu Rev Biophys 43:331–355 Hanani M et al (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114(2):279–283 Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64(2):304–327 Harvey RJ et al (2004) GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304(5672):884–887 Hefti FF et al (2006) Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 27(2):85–91 Herbert MK, Holzer P (2002) Neurogenic inflammation. I. Basic mechanisms, physiology and pharmacology. Anasthesiol Intensivmed Notfallmed Schmerzther 37(6):314–25 Heyer G et al (1995) Histamine-induced itch and alloknesis (itchy skin) in atopic eczema patients and controls. Acta Derm Venereol 75(5):348–352 Heyer G et al (1997) Opiate and H1 antagonist effects on histamine induced pruritus and alloknesis. Pain 73(2):239–243 Hojland CR et al (2015) A human surrogate model of itch utilizing the TRPA1 agonist trans-cinnamaldehyde. Acta Derm Venereol 95(7):798–803 Hon KL et al (2007) Pathophysiology of nocturnal scratching in childhood atopic dermatitis: the role of brain-derived neurotrophic factor and substance P. Br J Dermatol 157(5):922–925 Hosogi M et al (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126(1–3):16–23 Ikoma A et al (2003) Neurophysiology of pruritus: interaction of itch and pain. Arch Dermatol 139(11):1475–1478 Ikoma A et al (2003) Neuronal sensitization for histamine-induced itch in lesional skin of patients with atopic dermatitis. Arch Dermatol 139(11):1455–1458 Ikoma A et al (2004) Painful stimuli evoke itch in patients with chronic pruritus: central sensitization for itch. Neurology 62(2):212–217 Ikoma A et al (2005) Electrically evoked itch in humans. Pain 113(1–2):148–154 Ikoma A et al (2006) The neurobiology of itch. Nat Rev Neurosci 7(7):535–547 Ikoma A et al (2011) Anatomy and neurophysiology of pruritus. Semin Cutan Med Surg 30(2):64–70 Inoue K et al (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291(1):124–129 Ishiuji Y et al (2008) Repetitive scratching and noxious heat do not inhibit histamine-induced itch in atopic dermatitis. Br J Dermatol 158(1):78–83 Jain A et al (2011) TRP-channel-specific cutaneous eicosanoid release patterns. Pain 152(12):2765–2772 Jasmin L et al (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6(1):63–71 Ji RR et al (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705 Ji RR (2015) Neuroimmune interactions in itch: do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther 35:81–86 Ji RR et al (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366 Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354(6312):572–577 Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20(11):667–685 Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33 Jiang F et al (2009) Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch. Eur J Pharmacol 623(1–3):52–64 Jin SX et al (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23(10):4017–4022 Johansson O, Liang Y, Emtestam L (2002) Increased nerve growth factor- and tyrosine kinase A-like immunoreactivities in prurigo nodularis skin – an exploration of the cause of neurohyperplasia. Arch Dermatol Res 293(12):614–619 Katsuno M et al (2003) Neuropeptides concentrations in the skin of a murine (NC/Nga mice) model of atopic dermatitis. J Dermatol Sci 33(1):55–65 Kawasaki Y et al (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28(20):5189–5194 Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87(1):3–11 Kim S et al (2016) Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 9(437):ra71 Kinkelin I et al (2000) Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 302(1):31–37 Koltzenburg M (2000) Neural mechanisms of cutaneous nociceptive pain. Clin J Pain 16(3 Suppl):S131–S138 Kubanov AA, Katunina OR, Chikin VV (2015) Expression of neuropeptides, neurotrophins, and neurotransmitters in the skin of patients with atopic dermatitis and psoriasis. Bull Exp Biol Med 159(3):318–322 Kuruvilla M, Kalangara J, Lee FEE (2019) Neuropathic pain and itch mechanisms underlying allergic conjunctivitis. J Investig Allergol Clin Immunol 29(5):349–356 Kwak IS et al (2014) Immunohistochemical analysis of neuropeptides (protein gene product 9.5, substance P and calcitonin gene-related peptide) in hypertrophic burn scar with pain and itching. Burns 40(8):1661–7 van Laarhoven AI et al (2013) Sensitivity to itch and pain in patients with psoriasis and rheumatoid arthritis. Exp Dermatol 22(8):530–534 Lagerstrom MC et al (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68(3):529–542 Laird JM et al (2001) Role of central and peripheral tachykinin NK1 receptors in capsaicin-induced pain and hyperalgesia in mice. Pain 90(1–2):97–103 LaMotte RH et al (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66(1):190–211 LaMotte RH, Dong X, Ringkamp M (2014) Sensory neurons and circuits mediating itch. Nat Rev Neurosci 15(1):19–31 Lane NE et al (2010) Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 363(16):1521–1531 Lanotte M et al (2013) Central neuropathic itch as the presenting symptom of an intramedullary cavernous hemangioma: case report and review of literature. Clin Neurol Neurosurg 115(4):454–456 Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926 Lee CH et al (2012) Mechanistic correlations between two itch biomarkers, cytokine interleukin-31 and neuropeptide beta-endorphin, via STAT3/calcium axis in atopic dermatitis. Br J Dermatol 167(4):794–803 Lee JH et al (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157(6):1393–1404 Liang J, He Y, Ji W (2012) Bradykinin-evoked scratching responses in complete Freund’s adjuvant-inflamed skin through activation of B1 receptor. Exp Biol Med (Maywood) 237(3):318–326 Linderoth B, Meyerson B (2001) Peripheral and central nervous system stimulation in chronic therapy-resistant pain. Background, hypothetical mechanisms and clinical experiences. Lakartidningen 98(47):5328–34 (5336) Liu Y et al (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68(3):543–556 Liu XY et al (2011) Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147(2):447–458 Liu FY et al (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77 Liu T et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122(6):2195–2207 Liu T et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Investig 122(6):2195–2207 Liu B et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27(9):3549–3563 Liu T et al (2016) Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157(4):806–817 Liu B-W et al (2019) Altered expression of itch-related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch. Int J Mol Med 44(3):835–846 Liu T, Ji R-R (2013) New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 465(12):1671–1685 Malin S et al (2011) TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 31(29):10516–10528 Meseguer V et al (2014) TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun 5:3125 Metze D et al (1997) Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol 136(4):553–559 Mogil JS et al (2005) Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci U S A 102(36):12938–12943 Moniaga CS et al (2013) Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol 182(3):841–851 Murota H et al (2012) Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis. J Allergy Clin Immunol 130(3):671-682.e4 Muto Y et al (2012) Activation of NK1 receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain. Br J Pharmacol 166(3):1047–1057 Nathan PW (1990) Touch and surgical division of the anterior quadrant of the spinal cord. J Neurol Neurosurg Psychiatry 53(11):935–939 Nattkemper LA et al (2013) Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J Invest Dermatol 133(10):2489–2492 Nicolson TA et al (2007) Prostaglandin E2 sensitizes primary sensory neurons to histamine. Neuroscience 150(1):22–30 Nilsson HJ, Levinsson A, Schouenborg J (1997) Cutaneous field stimulation (CFS): a new powerful method to combat itch. Pain 71(1):49–55 Nilsson HJ, Schouenborg J (1999) Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin cutaneous fibers. Pain 80(1–2):103–112 Obata K et al (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115(9):2393–2401 Oh M-H et al (2013) TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 191(11):5371–5382 ((Baltimore, Md. : 1950)) Ohara PT et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15(5):450–463 Ozawa M et al (2009) Neuroselective transcutaneous electrical stimulation reveals neuronal sensitization in atopic dermatitis. J Am Acad Dermatol 60(4):609–614 Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354(6312):578–584 Pogatzki-Zahn E et al (2008) Chronic pruritus: targets, mechanisms and future therapies. Drug News Perspect 21(10):541–551 Potenzieri C, Undem BJ (2012) Basic mechanisms of itch. Clin Exp Allergy 42(1):8–19 Poulsen JN et al (2015) Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia. Exp Cell Res 336(1):94–99 Rajasekhar P et al (2015) P2Y1 receptor activation of the trpv4 ion channel enhances purinergic signaling in satellite glial cells. J Biol Chem 290(48):29051–29062 Ramos KM et al (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169(4):1888–1900 Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783 Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16(11):1267–1276 Robering JW et al (2019) Lysophosphatidic acid activates satellite glia cells and Schwann cells. Glia 67(5):999–1012 Roosterman D et al (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379 Ross SE et al (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65(6):886–898 Rukwied RR et al (2013) NGF sensitizes nociceptors for cowhage- but not histamine-induced itch in human skin. J Invest Dermatol 133(1):268–270 Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89(2):707–758 Sanga P et al (2013) Efficacy, safety, and tolerability of fulranumab, an anti-nerve growth factor antibody, in the treatment of patients with moderate to severe osteoarthritis pain. Pain 154(10):1910–1919 Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9(12):668–676 Scheinfeld N (2003) The role of gabapentin in treating diseases with cutaneous manifestations and pain. Int J Dermatol 42(6):491–495 Schmelz M et al (2003) Active “itch fibers” in chronic pruritus. Neurology 61(4):564–566 Schmelz M et al (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89(5):2441–2448 Schmelz M (2010) Itch and pain. Neurosci Biobehav Rev 34(2):171–176 Schmelz M (2015) Itch and pain differences and commonalities. Handb Exp Pharmacol 227:285–301 Shang H et al (2016) IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers 2016:1021942–1021942 Shiratori-Hayashi M et al (2015) STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat Med 21(8):927–931 Silva CR et al (2011) The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci 88(25–26):1077–1087 Simone DA et al (2004) Comparison of responses of primate spinothalamic tract neurons to pruritic and algogenic stimuli. J Neurophysiol 91(1):213–222 Simone DA, Alreja M, LaMotte RH (1991) Psychophysical studies of the itch sensation and itchy skin (“alloknesis”) produced by intracutaneous injection of histamine. Somatosens Mot Res 8(3):271–279 Singh F, Rudikoff D (2003) HIV-associated pruritus: etiology and management. Am J Clin Dermatol 4(3):177–188 Siniscalco D et al (2005) Neuropathic pain: is the end of suffering starting in the gene therapy? Curr Drug Targets 6(1):75–80 Smolyannikova VA et al (2015) Role of the skin expression of neuropeptides, neurotrophins and their receptors in the pathogenesis of dermatoses. Arkh Patol 77(4):33–39 Sonkoly E et al (2006) IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117(2):411–417 Stander S et al (2002) Hydroxyethyl starch does not cross the blood-brain or the placental barrierbut the perineurium of peripheral nerves in infused animals. Cell Tissue Res 310(3):279–287 Ständer S et al (2010) Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS ONE 5(6):e10968–e10968 Starnowska J et al (2017) Analgesic properties of opioid/NK1 multitarget ligands with distinct in vitro profiles in naive and chronic constriction injury mice. ACS Chem Neurosci 8(10):2315–2324 Steinhoff M et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23(15):6176–6180 Steinhoff M et al (2006) Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 126(8):1705–1718 Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829 Sun RQ et al (2004) Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 92(5):2859–2866 Takaoka A et al (2005) Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol 516(2):180–181 Tanaka A, Matsuda H (2005) Expression of nerve growth factor in itchy skins of atopic NC/NgaTnd mice. J Vet Med Sci 67(9):915–919 Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836 Tominaga M et al (2007) A hypothetical mechanism of intraepidermal neurite formation in NC/Nga mice with atopic dermatitis. J Dermatol Sci 46(3):199–210 Tominaga M et al (2009) Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis. J Dermatol Sci 55(1):40–46 Tominaga M, Takamori K (2014) Itch and nerve fibers with special reference to atopic dermatitis: therapeutic implications. J Dermatol 41(3):205–212 Toyoda M et al (2002) Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol 147(1):71–79 Toyoda M et al (2003) Localization and content of nerve growth factor in peripheral blood eosinophils of atopic dermatitis patients. Clin Exp Allergy 33(7):950–955 Trevisani M et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104(33):13519–13524 Tsuda M (2018) Modulation of Pain and Itch by Spinal Glia. Neurosci Bull 34(1):178–185 Vellani V et al (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61 Verge VM et al (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15(3 Pt 1):2081–2096 Vikman KS, Duggan AW, Siddall PJ (2007) Interferon-gamma induced disruption of GABAergic inhibition in the spinal dorsal horn in vivo. Pain 133(1–3):18–28 Vincent L et al (2013) Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood 122(11):1853–1862 Wang S et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131(Pt 5):1241–1251 Watanabe T et al (2011) Nerve growth factor level in the prostatic fluid of patients with chronic prostatitis/chronic pelvic pain syndrome is correlated with symptom severity and response to treatment. BJU Int 108(2):248–251 Wei Z et al (2019) Emerging role of schwann cells in neuropathic pain: receptors, glial mediators and myelination. Front Cell Neurosci 13:116 Weisshaar CL, Winkelstein BA (2014) Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat. J Pain 15(4):378–386 Wilson SR et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14(5):595–602 Wilson SR et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155(2):285–295 Wilson SR et al (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33(22):9283–9294 Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944):686–688 Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288(5472):1765–1769 Xie R-G et al (2018) Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 34(1):13–21 Xin WJ, Weng HR, Dougherty PM (2009) Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol Pain 5:15 Yamaguchi J et al (2009) Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J Dermatol Sci 53(1):48–54 Yeh JF et al (2017) Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 13:1744806917740233 Yosipovitch G, Berger T, Fassett MS (2020) Neuroimmune interactions in chronic itch of atopic dermatitis. Journal of the European Academy of Dermatology and Venereology : JEADV 34(2):239–250 Yosipovitch G, Greaves MW, Schmelz M (2003) Itch. Lancet 361(9358):690–4 Yusuf N et al (2009) Heat shock proteins HSP27 and HSP70 are present in the skin and are important mediators of allergic contact hypersensitivity. J Immunol 182(1):675–683 Zhang H et al (2009) Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 57(15):1588–1599 Zhang Y et al (2015) Microglia are involved in pruritus induced by DNFB via the CX3CR1/p38 MAPK pathway. Cell Physiol Biochem 35(3):1023–1033 Zhao P et al (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289(39):27215–27234 Ziegler SF et al (2013) The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66:129–155 Zygmunt PM et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457