Common Features of Opportunistic Premise Plumbing Pathogens

Joseph O. Falkinham1
1Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA

Tóm tắt

Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water—not contaminants—that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control.

Từ khóa


Tài liệu tham khảo

Falkinham, 2001, Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems, Appl. Environ. Microbiol., 67, 1225, 10.1128/AEM.67.3.1225-1231.2001

Donohue, 2014, Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States, Environ. Sci. Technol., 48, 3145, 10.1021/es4055115

Collier, 2012, Direct healthcare costs of selected diseases primarily or partially transmitted by water, Epidemiol. Infect., 140, 2003, 10.1017/S0950268811002858

Mirsaeidi, 2015, National hospital costs for pulmonary mycobacterial diseases in the US from 2001 to 2012, Int. J. Mycobacteriol., 4, 156, 10.1016/j.ijmyco.2014.09.005

Centers for Disease Control and Prevention (2000). Legionellosis—United States, 2000–2009. Morb. Mortal. Wkly. Rep., 60, 1083–1086.

Stout, 2002, Legionnaires’ disease contracted from patient homes: The coming of a third plaque?, Eur. J. Clin. Microbiol. Infect. Dis., 21, 699, 10.1007/s10096-002-0813-2

Li, L., Mendis, N., Trigui, H., Oliver, J.D., and Faucher, S.P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol.

Lau, 2009, The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water, J. Appl. Microbiol., 107, 368, 10.1111/j.1365-2672.2009.04208.x

Kuchta, 1985, Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains, Appl. Environ. Microbiol., 50, 21, 10.1128/aem.50.1.21-26.1985

Schofield, 1985, Colonization of components of a model hot water system by Legionella pneumophila, J. Appl. Bacteriol., 58, 151, 10.1111/j.1365-2672.1985.tb01442.x

Bezanson, 1992, In situ colonization of polyvinyl chloride, brass, and copper by Legionella pneumophila, Can. J. Microbiol., 38, 328, 10.1139/m92-055

Taylor, 2000, Chlorine-, chloramine-, chlorine dioxide- and ozone-susceptibility of Mycobacterium avium, Appl. Environ. Microbiol., 66, 1702, 10.1128/AEM.66.4.1702-1705.2000

Steed, 2006, Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare, Appl. Environ. Microbiol., 72, 4007, 10.1128/AEM.02573-05

Grobe, 2001, Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water, Int. J. Hyg. Environ. Health, 204, 139, 10.1078/1438-4639-00085

Furuhata, 1987, Growth and survival of a chlorine resistive Gram-negative rod bacterium Protomonas extorquens isolated dominantly from drinking tank-water, Bull. Jpn. Soc. Microb. Ecol., 4, 35, 10.1264/microbes1986.4.35

Karumathil, 2014, Effect of chlorine exposure on the survival and antibiotic gene expression of multidrug resistant Acinetobacter baumanii in water, Int. J. Environ. Res. Public Health, 11, 1844, 10.3390/ijerph110201844

Sisti, 1998, Bactericidal effect of chlorine on motile Aeromonas spp. in drinking water supplies and influence of temperature on disinfection efficacy, Lttrs. Appl. Microbiol., 26, 347, 10.1046/j.1472-765X.1998.00346.x

Maras, 2002, Epidemiology of human pulmonary infection with nontuberculous mycobacteria, Clin. Chest Med., 23, 553, 10.1016/S0272-5231(02)00019-9

Falkinham, 2008, Mycobacterium avium in a shower linked to pulmonary disease, J. Water Health, 6, 209, 10.2166/wh.2008.232

Falkinham, 2011, Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease, Emerg. Infect. Dis., 17, 419, 10.3201/eid1703.101510

Billinger, 2009, Nontuberculous mycobacteria-associated lung disease in hospitalized persons, United States, 1998–2005, Emerg. Infect. Dis., 15, 1562, 10.3201/eid1510.090196

Marras, 2007, Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003, Thorax, 62, 661, 10.1136/thx.2006.070797

Mullis, 2013, Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials, J. Appl. Microbiol., 115, 908, 10.1111/jam.12272

Buchholtz, 1992, Heat susceptibility of aquatic mycobacteria, Appl. Environ. Microbiol., 58, 1869, 10.1128/aem.58.6.1869-1873.1992

Lewis, 2015, Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum, Int. J. Mycobacteriol., 4, 25, 10.1016/j.ijmyco.2014.11.066

Cirillo, 1997, Interadtion of Mycobacterium avium with environmental amoebae enhances virulence, Infect. Immun., 65, 3759, 10.1128/iai.65.9.3759-3767.1997

Thomas, 2006, Biodiversity of amoebae and amoebae-resisting bacteria in a hospital water network, Appl. Environ. Microbiol., 72, 2428, 10.1128/AEM.72.4.2428-2438.2006

Fugita, 2011, Pneumonia due to Pseudomonas aeruginosa. Part I: Epidemiology, clinical diagnosis, and source, Chest, 139, 909, 10.1378/chest.10-0166

Cuttelod, 2011, Molecular epidemiology of Pseudomonas aeruginosa in intensive care units over a 10-year period (1998–2007), Clin. Microbiol. Infect., 17, 57, 10.1111/j.1469-0691.2010.03164.x

Reuter, 2002, Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets, Crit. Care Med., 30, 2222, 10.1097/00003246-200210000-00008

Rogues, 2007, Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit, J. Hosp. Infect., 67, 72, 10.1016/j.jhin.2007.06.019

Stoodley, 1994, Effects of biofilm structures on oxygen distribution and mass transport, Biotechnol. Bioeng., 43, 1131, 10.1002/bit.260431118

Rogers, 1994, Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems, Appl. Environ. Microbiol., 60, 1842, 10.1128/aem.60.6.1842-1851.1994

Palmer, 2007, Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum, J. Bacteriol., 189, 4449, 10.1128/JB.00162-07

Smith, 1985, Pseudomonas mesophilica infections in humans, J. Clin. Microbiol., 21, 314, 10.1128/jcm.21.3.314-317.1985

Gilchrist, 1986, Detection of Pseudomonas mesophilica as a source of nosocomial infections in a bone marrow transplant unit, J. Clin. Microbiol., 23, 1052, 10.1128/jcm.23.6.1052-1055.1986

Poirier, 1988, Bacteremia caused by Pseudomonas mesophilica, Can. Med. Assoc. J., 139, 411

Rutherford, 1988, Peritonitis caused by Pseudomonas mesophilica in a patient undergoing continuous ambulatory peritoneal dialysis, J. Clin. Microbiol., 26, 2441, 10.1128/jcm.26.11.2441-2443.1988

Flournoy, 1992, A pseudo-outbreak of Methylobacterium mesophilica isolated from patients undergoing bronchoscopy, Eur. J. Clin. Microbiol. Infect. Dis., 11, 240, 10.1007/BF02098087

Kovalea, 2014, Methylobacterium and its role in health care-associated infections, J. Clin. Microbiol., 52, 1317, 10.1128/JCM.03561-13

Hiraishi, 1995, Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments, Appl. Environ. Microbiol., 61, 2099, 10.1128/aem.61.6.2099-2107.1995

Waturangi, 2008, Analysis of pink pigmented facultative methylotroph bacteria from human environments, Microbiol. Indones, 2, 112, 10.5454/mi.2.3.3

Yano, 2013, Stress tolerance of Methylobacterium biofilms in bathrooms, Microbes Environ., 28, 87, 10.1264/jsme2.ME12146

Sunenshine, 2007, Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization, Emerg. Infect. Dis., 13, 97, 10.3201/eid1301.060716

Davis, 2014, A 16-years prospective study of community-onset bacteremic Acinetobacter pneumonia, Chest, 146, 1038, 10.1378/chest.13-3065

Bifulco, 1989, Detection of Acinetobacter spp. in rural drinking water supplies, Appl. Environ. Microbiol., 55, 2214, 10.1128/aem.55.9.2214-2219.1989

Moore, 2013, Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap, Appl. Microbiol. Biotechnol., 97, 329, 10.1007/s00253-012-4190-1

Roca, I., Espinal, P., Vila-Farrés, X., and Vila, J. (2012). The Acinetobacter baumanii oxymoron: Commensal hospital dweller turned pan-drug-resistant menace. Frontiers Microbiol., 3.

Cateau, 2011, Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii, FEMS Microbiol. Lett., 319, 19, 10.1111/j.1574-6968.2011.02261.x

Handifeld, 1996, Aeromonas hydrophila isolated from food and drinking water: Hemagglutination, hemolysis, and cytotoxicity for a human intestinal cell line (HT-29), Appl. Environ. Microbiol., 62, 3459, 10.1128/aem.62.9.3459-3461.1996

Hazen, 1978, Prevalence and distribution of Aeromonas hydrophila in the United States, Appl. Environ. Microbiol., 36, 731, 10.1128/aem.36.5.731-738.1978

Burke, 1984, Isolation of Aeromonas hydrophila from a metropolitan water supply: Seasonal correlation with clinical isolates, Appl. Environ. Microbiol., 48, 361, 10.1128/aem.48.2.361-366.1984

Krovacek, 1992, Isolation and virulence profiles of Aeromonas spp. from different municipal drinking water supplies in Sweden, Food Microbiol., 9, 215, 10.1016/0740-0020(92)80049-A

Assanta, 1998, Adhesion of Aeromonas hydrophila to water distribution system pipes after different contact times, J. Food Protect., 10, 1321, 10.4315/0362-028X-61.10.1321

Allestam, 1997, Diversity, persistence, and virulence of Aeromonas strains isolated from drinking water distribution systems in Sweden, Appl. Environ. Microbiol., 63, 2708, 10.1128/aem.63.7.2708-2715.1997

Gavriel, 1998, Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland, J. Appl. Microbiol., 84, 383, 10.1046/j.1365-2672.1998.00354.x

Chauret, 2001, Detection of Aeromonas hydrophila in a drinking water distribution system: A field and pilot study, Can. J. Microbiol., 47, 782, 10.1139/w01-070

Butler, 2005, Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov., Int. J. Syst. Evol. Microbiol., 55, 1615, 10.1099/ijs.0.63465-0

Butler, 2007, First isolations of Segniliparus rugosus from patients with cystic fibrosis, J. Clin. Microb., 45, 3449, 10.1128/JCM.00765-07

Hansen, 2009, Segniliparus rugosus infection, Australia, Emerg Infect. Dis., 15, 611, 10.3201/eid1504.081479

Koh, 2011, First case of Segniliparus rotundus pneumonia in a patient with bronchiectasis, J. Clin. Microbiol., 49, 3403, 10.1128/JCM.01023-11

Evans, 2011, Segniliparus rugosus-associated bronchiolitis in a California Sea Lion, Emerg. Infect. Dis., 17, 311, 10.3201/eid1702.101511

Patrick, 2014, Incidence of Cronobacter spp. infections, United States, 2003–2009, Emerg. Infect. Dis., 20, 1520, 10.3201/eid2009.140545

Beuchat, 2009, Cronobacter sakazakii in foods and factors affecting its survival, growth and inactivation, Int. J. Food Microbiol., 136, 201, 10.1016/j.ijfoodmicro.2009.02.029

Cervia, 2008, Hospital tap water as a source of Stentrophomonas maltophila infection, Clin. Infect. Dis., 46, 1485, 10.1086/587180

Ryan, 2009, The versatility and adaptation of bacteria from the genus Stentrophomonas, Nat. Rev. Microbiol., 7, 514, 10.1038/nrmicro2163

Cateau, 2014, Stentrophomonas maltophila and Vermamoeba vermiformis relationships: Bacterial multiplication and protection in amoebal-derived structures, Res. Microbiol., 165, 847, 10.1016/j.resmic.2014.10.004

Park, 2001, Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system, Water Res., 35, 1624, 10.1016/S0043-1354(00)00582-0

Azevedo, 2008, Persistence of Helicobacter pylori in heterotrophic drinking water biofilms, Appl Environ. Microbiol., 74, 5898, 10.1128/AEM.00827-08

Azevedo, 2007, Coccoid form of Helicobacter pylori as a morphological manifestation of cell adaptation to the environment, Appl. Environ. Microbiol., 73, 3423, 10.1128/AEM.00047-07

Rastogi, 1981, Multiple drug resistance in Mycobacterium avium: Is the wall architecture responsible for the exclusion of antimicrobial agents?, Antimicrob. Agents Chemother., 20, 666, 10.1128/AAC.20.5.666

Centers for Disease and Prevention (2013). Antibiotic Resistance Threats in the United States, Available online:http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.

Salah, 2009, Free-living amoebae, a training field for macrophage resistance of mycobacteria, Clin. Microbiol. Infect., 15, 894, 10.1111/j.1469-0691.2009.03011.x

Arnow, 1985, Prevalence and significance of Legionella pneumophila contamination of residential hot-tap water systems, J. Infect. Dis., 152, 145, 10.1093/infdis/152.1.145

Pryor, 2004, Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes, Water Sci. Technol., 50, 83, 10.2166/wst.2004.0025