Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

APL Materials - Tập 1 Số 1 - 2013
Anubhav Jain1,2, Shyue Ping Ong3,4, Geoffroy Hautier3,1,5, Wei Chen1,2, W. Lance Richards3,4, Stephen Dacek3,4, Shreyas Cholia1,2, Dan Gunter1,2, David Skinner1,2, Gerbrand Ceder3,4, Kristin A. Persson1,2
12Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
2Lawrence Berkeley National Laboratory 1 , Berkeley 94720, California, USA
31Lawrence Berkeley National Laboratory, Berkeley 94720, California, USA
4Massachusetts Institute of Technology 2 , Cambridge 02139, Massachusetts, USA
5Université catholique de Louvain 3 , Louvain-la-Neuve, Belgium

Tóm tắt

Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

Từ khóa


Tài liệu tham khảo

U.S.D. of Energy, 2010, Department of Energy Workshop: Computational Materials Science and Chemistry for Innovation

2009, The Advanced Materials Revolution: Technology and Economic Growth in the Age of Globalization

2011

1926, Phys. Rev., 22, 1049, 10.1103/PhysRev.28.1049

1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

2006, MRS Bull., 31, 659, 10.1557/mrs2006.174

2012, J. Mater. Sci., 47, 7317, 10.1007/s10853-012-6424-0

2012, Energy Environ. Sci., 5, 9034, 10.1039/c2ee22341d

2012, Energy Environ. Sci., 5, 5814, 10.1039/c1ee02717d

2012, Phys. Rev. Lett., 108, 068701, 10.1103/PhysRevLett.108.068701

2012, Nature Mater., 11, 614, 10.1038/nmat3332

2009, Comput. Mater. Sci., 44, 1042, 10.1016/j.commatsci.2008.07.016

2011, ACS Comb. Sci., 13, 382, 10.1021/co200012w

2012, Nature Mater., 11, 633, 10.1038/nmat3336

2011, Phys. Rev. B, 84, 014103, 10.1103/PhysRevB.84.014103

2011, Phys. Rev. X, 1, 021012, 10.1103/PhysRevX.1.021012

2012, Comput. Mater. Sci., 58, 227, 10.1016/j.commatsci.2012.02.002

2006, Nature Mater., 5, 909, 10.1038/nmat1752

2006, J. Phys. Chem. B, 110, 8769, 10.1021/jp060482m

2007, J. Phys. Chem. C, 111, 12129, 10.1021/jp0733724

2011, J. Electrochem. Soc., 158, A309, 10.1149/1.3536532

2012, Chemistry of Materials, 24, 2009, 10.1021/cm203243x

2012, J. Electrochem. Soc., 159, A622, 10.1149/2.080205jes

2011, J. Mater. Chem., 21, 17147, 10.1039/c1jm12216a

2012, J. Am. Chem. Soc., 134, 19619, 10.1021/ja3040834

2011, J. Phys. Chem. Lett., 2, 2241, 10.1021/jz200866s

2012, Angew. Chem., Int. Ed. Engl., 51, 272, 10.1002/anie.201107947

1996, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

2002, Acta Crystallogr., Sect. B: Struct. Sci., 58, 364, 10.1107/S0108768102006948

1983, J. Chem. Inf. Comput. Sci., 23, 66, 10.1021/ci00038a003

2008, Nature Mater., 7, 937, 10.1038/nmat2321

2006, J. Chem. Phys., 124, 244704, 10.1063/1.2210932

2012, Phys. Rev. Lett., 108, 027401, 10.1103/PhysRevLett.108.027401

2006, Phys. Rev. Lett., 97, 046401, 10.1103/PhysRevLett.97.046401

2011, Inorg. Chem., 50, 656, 10.1021/ic102031h

2010, Chem. Mater., 22, 3762, 10.1021/cm100795d

2006, Nature Mater., 5, 641, 10.1038/nmat1691

2006, Phys. Rev. B, 73, 195107, 10.1103/PhysRevB.73.195107

2013, Phys. Rev. B, 87, 075150, 10.1103/PhysRevB.87.075150

2008, Phys. Rev. B, 78, 245207, 10.1103/PhysRevB.78.245207

2013, Phys. Rev. B, 87, 075207, 10.1103/PhysRevB.87.075207

2011, Phys. Rev. B, 84, 045115, 10.1103/PhysRevB.84.045115

2012, Phys. Rev. B, 85, 235438, 10.1103/PhysRevB.85.235438

1965, Phys. Rev., 139, A796, 10.1103/PhysRev.139.A796

2005, J. Chem. Phys., 123, 174101, 10.1063/1.2085170

2010, Phys. Rev. Lett., 105, 196403, 10.1103/PhysRevLett.105.196403

1984, Phys. Rev. Lett., 52, 997, 10.1103/PhysRevLett.52.997

2009, Phys. Rev. Lett., 102, 5, 10.1103/PhysRevLett.102.226401

2011, Phys. Rev. B, 83, 195131, 10.1103/PhysRevB.83.195131

2003, Phys. Rev. Lett., 91, 126402, 10.1103/PhysRevLett.91.126402

1995, Int. J. Quantum Chem., 56, 247, 10.1002/qua.560560410

2010, Electrochem. Commun., 12, 427, 10.1016/j.elecom.2010.01.010

2008, Chem. Mater., 20, 1798, 10.1021/cm702327g

2012, Proceedings of the 5th Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS)

2013, Comput. Mater. Sci., 68, 314, 10.1016/j.commatsci.2012.10.028

2000, Rev. Mod. Phys., 72, 621, 10.1103/RevModPhys.72.621

2002, Comput. Mater. Sci., 25, 478, 10.1016/S0927-0256(02)00325-7

2012, Am. Mineral., 97, 791, 10.2138/am.2012.3948

2011, J. Electrochem. Soc., 158, A1411, 10.1149/2.083112jes

2013, J. Magn. Magn. Mater., 341, 72, 10.1016/j.jmmm.2013.04.025

1984, Russ. Metall., 2, 202