Comment on “Random Quantum Circuits are Approximate 2-designs” by A.W. Harrow and R.A. Low (Commun. Math. Phys. 291, 257–302 (2009))

Springer Science and Business Media LLC - Tập 304 - Trang 281-293 - 2011
Igor Tuche Diniz1,2, Daniel Jonathan1
1Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
2Institut Néel CNRS, Grenoble, France

Tóm tắt

In [A.W. Harrow and R.A. Low, Commun. Math. Phys. 291(1):257–302 (2009)], it was shown that a quantum circuit composed of random 2-qubit gates converges to an approximate quantum 2-design in polynomial time. We point out and correct a flaw in one of the paper’s main arguments. Our alternative argument highlights the role played by transpositions induced by the random gates in achieving convergence.

Tài liệu tham khảo

DiVincenzo D.P., Leung D.W., Terhal B.M.: Quantum Data Hiding. IEEE Trans. Inf Theory 48(3), 580–599 (2002)

Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times: With a Chapter on Coupling from the Past by James G. Propp and David B. Wilson. Providence, RI: Amer. Math. Soc., 2008

Diaconis, P.: Group representations in probability and statistics. Hayward, CA: Inst. Math. Stat., 1988

Knuth D.E.: The art of computer programming, Vol. 2: Seminumerical algorithms. Reading, MA, Addison-Wesley, 3rd edition (1997)

Boyd S., Diaconis P., Parrilo P., Xiao L.: Symmetry Analysis of Reversible Markov Chains. Internet Mathematics 2(1), 31 (2005)

Diniz, I. Tuche de A.: Algoritmos quânticos para a geração de unitários pseudo-aleatórios. Master’s thesis, Universidade Federal Fluminense, Brazil, 2009