Combustion synthesis process for the rapid preparation of high-purity SrO powders

Walter de Gruyter GmbH - Tập 32 - Trang 682-687 - 2014
Francisco Granados-Correa1, Juan Bonifacio-Martínez1
1Departamento de Química, Instituto Nacional de Investigaciones Nucleares, México, D. F., México

Tóm tắt

A rapid, safe and simple technique for the production of high purity strontium oxide powders via a chemical combustion process is reported. The combustion reactions were performed to optimize the fuel to oxidizer ratios in the reaction mixtures required to obtain pure SrO powders by varying the molar ratio of chemical precursors and the temperature. The synthesized powders were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and N2-physisorption measurements. The results indicate that crystalline SrO was obtained using a 1:1 strontium nitrate: urea molar ratio at 1000 °C after 5 minutes. In addition, high-purity, homogeneous and crystalline SrO powders were easily produced in a short time via a chemical combustion process.

Tài liệu tham khảo

Yu J., Guo H., Cheng B., J. Solid State Chem., 179 (2006), 800. Li S., Zhang H., Xu J., Yang D., Mater. Lett., 59 (2005), 420. Yoosuk B., Krasae P., Puttasawat B., Udomsap P., Viriya-Empikul N., Faungnawakij K., Chem. Eng. J., 162 (2010), 58. Joyce A.O., Strontium, Minerals Yearbook. Volume 1. Metals and Minerals, US, Bureau of Mines, 1992, 11323. Ozuna O., Hirata G.A., Kittrick M.C., J. Phys.-Condens. Mat., 16 (2004), 2585. Chandrappa K.G., Venkatesha T.V., Nayana K.O., Punithkumar M.K., Mater. Corros., 63 (2012), 445. Kingsley J.J., Pederson L.R., Mater. Lett., 18 (1993), 89. Chandran R.G., Patil K.C., Mater. Lett., 10 (1990), 291. Manoharan S.S., Patil K.C., J. Am. Ceram. Soc., 75 (1992), 1012. Li F., Hu, J. L., Zhang L.D., Chen G., J. Nucl. Mater., 300 (2002), 82. Patil K.C., Aruna S.T., Mimami T., Curr. Opin. Solid St. M., 6(6) (2002), 507. Biamino S., Badini C., J. Eur. Ceram. Soc., 24 (2004), 3021. Chick L.A., Pederson L.R., Maupin G.D., Bates J.L., Thomas L.E., Exarhos G.H., Mater. Lett., 10 (1990), 6. Sharma S.K., Pitale S.S., Malik P.M., Dubey R.N., Qureshi M.S., Ojha S., Physica B, 405 (2010), 866. Granados-Correa F., Bonifacio-Martínez J., Lara V.H., Bosch P., Bulbulian S., Appl. Surf. Sci., 254 (2008), 4688. Alvarado-Ibarra Y., Granados-Correa F., Lara V.H., Bosch P., Bulbulian S., Colloid. Surface A, 345 (2009), 135. Granados-Correa F., Jiménez-Reyes M., Sep. Sci. Technol., 46 (2011), 2360. Medine G.M., Klabunde K.J., Zaikovskii V., J. Nanopart. Res., 4 (2002), 357. Mathews T., Subasri R., Sreedharan O.M., Solid State Ionics, 148 (2002), 135. Cruz D., Pfeiffer H., Bulbulian S., Solid State Sci., 8 (2006), 470. Campbell P.F., Ortner M.H., Anderson C., Anal. Chem., 33 (1961), 58. Sahu R.K., Ray A.K., Das S.K., Kailath A.J., Pathak L.C., J. Mater. Res., 21 (2006), 1664. Lowell S., Introduction to Powder Surface Area, Interscience Publishers, Toronto, Canada, 1979.