Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance
Tóm tắt
Từ khóa
Tài liệu tham khảo
M Lipsitch, 2011, Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1, Biosecurity and bioterrorism: biodefense strategy, practice, and science, 9, 89
WHO (2015) Influenza (Seasonal), Fact Sheet Number 211. Available at <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.who.int/mediacentre/factsheets/fs211/en/index.html" xlink:type="simple">http://www.who.int/mediacentre/factsheets/fs211/en/index.html</ext-link>.
Cobb L, Krishnamurthy A, Mandel J, and Beezley JD. Bayesian tracking of emerging epidemics using ensemble optimal statistical interpolation. Spatial and spatio-temporal epidemiology. 2014; 10: 39–48.
W Yang, 2014, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics, PLoS computational biology, 10, e1003583, 10.1371/journal.pcbi.1003583
W Yang, 2015, Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data, Proceedings of the National Academy of Sciences, 112, 2723, 10.1073/pnas.1415012112
J Ginsberg, 2009, Detecting influenza epidemics using search engine query data, Nature, 457, 1012, 10.1038/nature07634
SV Scarpino, 2012, Optimizing provider recruitment for influenza surveillance networks, PLoS Comput Biol, 8, e1002472, 10.1371/journal.pcbi.1002472
PM Polgreen, 2008, Using internet searches for influenza surveillance, Clinical Infectious Diseases, 47, 1443, 10.1086/593098
Q Yuan, 2013, Monitoring influenza epidemics in China with search query from Baidu, PLoS One, 8, e64323, 10.1371/journal.pone.0064323
A Signorini, 2011, The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic, PLoS ONE, 6, e19467, 10.1371/journal.pone.0019467
MJ Paul, 2014, Twitter Improves Influenza Forecasting, PLoS currents, 6
Chen L, Tozammel Hossain KSM, Butler P, Ramakrishnan N, and Prakash BA. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter using Temporal Topic Models. IEEE International Conference In Data Mining (ICDM), 2014; pp. 755–760. IEEE,.
DJ McIver, 2014, Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time, PLoS Comput. Biol., 10, e1003581, 10.1371/journal.pcbi.1003581
N Generous, 2014, Global disease monitoring and forecasting with wikipedia, PLoS computational biology, 10, e1003892, 10.1371/journal.pcbi.1003892
Crawley AW Flu near you: Comparing crowd-sourced reports of influenza-like illness to the CDC outpatient influenza-like illness surveillance network, October 2012 to March 2014. In 2014 CSTE Annual Conference. Cste, 2014.
MS Smolinski, 2015, Flu Near You: Crowdsourced Symptom Reporting Spanning Two Influenza Seasons, American Journal of Public Health, e1
M Santillana, 2014, Using Clinicians’ Search Query Data to Monitor Influenza Epidemics, Clinical Infectious Diseases, 59, 1446, 10.1093/cid/ciu647
S Cook, 2011, Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic, PLoS ONE, 6, e23610, 10.1371/journal.pone.0023610
DR Olson, 2013, Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales, PLoS Comput. Biol, 9, e1003256, 10.1371/journal.pcbi.1003256
DM Lazer, 2014, The parable of Google flu: traps in big data analysis, Science, 343, 1203, 10.1126/science.1248506
M Santillana, 2014, What can digital disease detection learn from (an external revision to) Google flu trends?, Am. J. Prev. Med., 47, 341, 10.1016/j.amepre.2014.05.020
M Davidson, 2015, Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions, Sci. Rep., 5, 10.1038/srep08154
Yang S, Santillana M, and Kou SC. ARGO: a model for accurate estimation of influenza epidemics using Google search data. 2015. <italic>arXiv preprint arXiv</italic>:<italic>1505</italic>.<italic>00864</italic>.
Lamb A, Paul MJ, and Dredze M. Separating Fact from Fear: Tracking Flu Infections on Twitter. <italic>HLT-NAACL</italic>. 2013.
DA Broniatowski, 2013, National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic, PloS one, 8, e83672, 10.1371/journal.pone.0083672
Dredze M, Cheng R, Paul M, and Broniatowski D. <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://HealthTweets.org" xlink:type="simple">HealthTweets.org</ext-link>: A Platform for Public Health Surveillance using Twitter. AAAI Workshop on the World Wide Web and Public Health Intelligence, 2014.
P Copeland, 2013, Google disease trends: an update, Int Soc Negl Trop Dis, 3
C Stefansen, 2014, Google Flu Trends gets a brand new engine, Google Research Blog
J Friedman, 2009, The elements of statistical learning, 2
A Smola, 1997, Support vector regression machines, Advances in neural information processing systems, 9, 155
Y Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of computer and system sciences, 55.1, 119, 10.1006/jcss.1997.1504
Brownstein JS, and Mandl KD. Reengineering real time outbreak detection systems for influenza epidemic monitoring. In <italic>AMIA Annual Symposium Proceedings</italic>. American Medical Informatics Association. <italic>2006;</italic> Vol. 2006, p. 866.
DR Olson, 2007, Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City, PLoS Med, 4, e247, 10.1371/journal.pmed.0040247
C Viboud, 2014, Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US, PLOS One, 9, e102429, 10.1371/journal.pone.0102429
D Paolotti, 2014, Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience, Clinical Microbiology and Infection, 20, 17, 10.1111/1469-0691.12477
C Dalton, 2009, Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008, Commun Dis Intell Q Rep, 33, 316
EH Chan, 2011, Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance, PLoS Negl Trop Dis, 5, e1206, 10.1371/journal.pntd.0001206
LC Madoff, 2011, A new approach to monitoring dengue activity, PLoS Negl Trop Dis, 5, e1215, 10.1371/journal.pntd.0001215
RT Gluskin, 2014, Evaluation of Internet-based dengue query data: Google Dengue Trends, PLoS neglected tropical diseases, 8.2, e2713, 10.1371/journal.pntd.0002713
AJ Ocampo, 2013, Using search queries for malaria surveillance, Thailand. Malaria journal, 12.1, 390, 10.1186/1475-2875-12-390