Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance

PLoS Computational Biology - Tập 11 Số 10 - Trang e1004513
Mauricio Santillana1,2,3, André T. Nguyen3, Mark Dredze4, Michael J. Paul5, Elaine O. Nsoesie6,7, John S. Brownstein1,2
1Boston Children’s Hospital Informatics Program, Boston, Massachusetts, United States of America
2Harvard Medical School, Boston, Massachusetts, United States of America
3Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
4Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
5Department of Information Science, University of Colorado, Boulder, Colorado, United States of America
6Department of Global Health, University of Washington, Seattle, Washington, United States of America
7Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America

Tóm tắt

Từ khóa


Tài liệu tham khảo

M Lipsitch, 2011, Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1, Biosecurity and bioterrorism: biodefense strategy, practice, and science, 9, 89

WHO (2015) Influenza (Seasonal), Fact Sheet Number 211. Available at <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.who.int/mediacentre/factsheets/fs211/en/index.html" xlink:type="simple">http://www.who.int/mediacentre/factsheets/fs211/en/index.html</ext-link>.

Cobb L, Krishnamurthy A, Mandel J, and Beezley JD. Bayesian tracking of emerging epidemics using ensemble optimal statistical interpolation. Spatial and spatio-temporal epidemiology. 2014; 10: 39–48.

W Yang, 2014, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics, PLoS computational biology, 10, e1003583, 10.1371/journal.pcbi.1003583

W Yang, 2015, Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data, Proceedings of the National Academy of Sciences, 112, 2723, 10.1073/pnas.1415012112

J Ginsberg, 2009, Detecting influenza epidemics using search engine query data, Nature, 457, 1012, 10.1038/nature07634

SV Scarpino, 2012, Optimizing provider recruitment for influenza surveillance networks, PLoS Comput Biol, 8, e1002472, 10.1371/journal.pcbi.1002472

PM Polgreen, 2008, Using internet searches for influenza surveillance, Clinical Infectious Diseases, 47, 1443, 10.1086/593098

Q Yuan, 2013, Monitoring influenza epidemics in China with search query from Baidu, PLoS One, 8, e64323, 10.1371/journal.pone.0064323

A Signorini, 2011, The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic, PLoS ONE, 6, e19467, 10.1371/journal.pone.0019467

MJ Paul, 2014, Twitter Improves Influenza Forecasting, PLoS currents, 6

Chen L, Tozammel Hossain KSM, Butler P, Ramakrishnan N, and Prakash BA. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter using Temporal Topic Models. IEEE International Conference In Data Mining (ICDM), 2014; pp. 755–760. IEEE,.

DJ McIver, 2014, Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time, PLoS Comput. Biol., 10, e1003581, 10.1371/journal.pcbi.1003581

N Generous, 2014, Global disease monitoring and forecasting with wikipedia, PLoS computational biology, 10, e1003892, 10.1371/journal.pcbi.1003892

Crawley AW Flu near you: Comparing crowd-sourced reports of influenza-like illness to the CDC outpatient influenza-like illness surveillance network, October 2012 to March 2014. In 2014 CSTE Annual Conference. Cste, 2014.

MS Smolinski, 2015, Flu Near You: Crowdsourced Symptom Reporting Spanning Two Influenza Seasons, American Journal of Public Health, e1

M Santillana, 2014, Using Clinicians’ Search Query Data to Monitor Influenza Epidemics, Clinical Infectious Diseases, 59, 1446, 10.1093/cid/ciu647

D Butler, 2013, When Google got flu wrong, Nature, 494, 155, 10.1038/494155a

S Cook, 2011, Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic, PLoS ONE, 6, e23610, 10.1371/journal.pone.0023610

DR Olson, 2013, Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales, PLoS Comput. Biol, 9, e1003256, 10.1371/journal.pcbi.1003256

DM Lazer, 2014, The parable of Google flu: traps in big data analysis, Science, 343, 1203, 10.1126/science.1248506

M Santillana, 2014, What can digital disease detection learn from (an external revision to) Google flu trends?, Am. J. Prev. Med., 47, 341, 10.1016/j.amepre.2014.05.020

M Davidson, 2015, Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions, Sci. Rep., 5, 10.1038/srep08154

Yang S, Santillana M, and Kou SC. ARGO: a model for accurate estimation of influenza epidemics using Google search data. 2015. <italic>arXiv preprint arXiv</italic>:<italic>1505</italic>.<italic>00864</italic>.

Lamb A, Paul MJ, and Dredze M. Separating Fact from Fear: Tracking Flu Infections on Twitter. <italic>HLT-NAACL</italic>. 2013.

DA Broniatowski, 2013, National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic, PloS one, 8, e83672, 10.1371/journal.pone.0083672

Dredze M, Cheng R, Paul M, and Broniatowski D. <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://HealthTweets.org" xlink:type="simple">HealthTweets.org</ext-link>: A Platform for Public Health Surveillance using Twitter. AAAI Workshop on the World Wide Web and Public Health Intelligence, 2014.

P Copeland, 2013, Google disease trends: an update, Int Soc Negl Trop Dis, 3

C Stefansen, 2014, Google Flu Trends gets a brand new engine, Google Research Blog

J Friedman, 2009, The elements of statistical learning, 2

L Breiman, 1996, Stacked regressions, Machine Learning, 24, 49, 10.1007/BF00117832

A Smola, 1997, Support vector regression machines, Advances in neural information processing systems, 9, 155

Y Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of computer and system sciences, 55.1, 119, 10.1006/jcss.1997.1504

Brownstein JS, and Mandl KD. Reengineering real time outbreak detection systems for influenza epidemic monitoring. In <italic>AMIA Annual Symposium Proceedings</italic>. American Medical Informatics Association. <italic>2006;</italic> Vol. 2006, p. 866.

DR Olson, 2007, Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City, PLoS Med, 4, e247, 10.1371/journal.pmed.0040247

C Viboud, 2014, Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US, PLOS One, 9, e102429, 10.1371/journal.pone.0102429

D Paolotti, 2014, Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience, Clinical Microbiology and Infection, 20, 17, 10.1111/1469-0691.12477

C Dalton, 2009, Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008, Commun Dis Intell Q Rep, 33, 316

EH Chan, 2011, Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance, PLoS Negl Trop Dis, 5, e1206, 10.1371/journal.pntd.0001206

LC Madoff, 2011, A new approach to monitoring dengue activity, PLoS Negl Trop Dis, 5, e1215, 10.1371/journal.pntd.0001215

RT Gluskin, 2014, Evaluation of Internet-based dengue query data: Google Dengue Trends, PLoS neglected tropical diseases, 8.2, e2713, 10.1371/journal.pntd.0002713

AJ Ocampo, 2013, Using search queries for malaria surveillance, Thailand. Malaria journal, 12.1, 390, 10.1186/1475-2875-12-390

R Nagar, 2014, A Case Study of the New York City 2012–2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives, Journal of medical Internet research, 16, 10.2196/jmir.3416