Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc‐LCOs in Medicago truncatula

New Phytologist - Tập 208 Số 1 - Trang 224-240 - 2015
Carlos Camps1,2, Marie‐Françoise Jardinaud1,3,4, David Rengel1,2, Sébastien Carrère1,2, Christine Hervé1,2, Frédéric Debellé1,2, Pascal Gamas1,2, Sandra Bensmihen1,2, Clare Gough1,2
1CNRS Laboratoire des Interactions Plantes‐Microorganismes (LIPM) UMR2594 F‐31326 Castanet‐Tolosan France
2INRA Laboratoire des Interactions Plantes‐Microorganismes (LIPM) UMR441 F‐31326 Castanet‐Tolosan France
3CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
4INPT‐Université de Toulouse ENSAT Avenue de l'Agrobiopole, Auzeville‐Tolosane F‐31326 Castanet‐Tolosan France

Tóm tắt

Summary Myc‐LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo‐chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc‐LCOs we aimed to analyse Myc‐LCO‐induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA‐seq) was performed on roots of Medicago truncatula wild‐type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc‐LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc‐LCO‐regulation of transcriptomic reprogramming were highlighted: DMI3‐ and NSP1‐dependent; DMI3‐dependent and NSP1‐independent; and DMI3‐ and NSP1‐independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1‐dependent and ‐independent pathways downstream of DMI3. Our data also indicate significant Myc‐LCO‐activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP.

Từ khóa


Tài liệu tham khảo

10.1016/j.jprot.2014.05.028

10.4161/psb.20039

10.1186/gb-2010-11-10-r106

10.1105/tpc.107.052944

10.1111/nph.12120

10.1073/pnas.0710273105

10.3389/fpls.2014.00237

10.1111/j.1469-8137.1988.tb03698.x

10.1046/j.1365-313X.2003.01743.x

10.1104/pp.109.148684

10.1111/j.1365-313X.2008.03519.x

10.1111/j.2517-6161.1995.tb02031.x

10.1016/j.pbi.2011.03.014

10.1104/pp.112.208538

10.1007/s00572-003-0263-4

10.1094/MPMI.1998.11.6.504

10.1105/tpc.12.9.1647

10.1094/MPMI-21-8-1118

Cook D, 1995, Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti, Plant Cell, 7, 43

10.1104/pp.112.195990

10.1111/nph.12340

10.1111/j.1364-3703.2009.00581.x

10.1104/pp.111.172627

10.1093/glycob/12.6.79R

10.1104/pp.104.043612

10.1038/nature00842

10.1016/j.pbi.2014.05.014

10.1094/MPMI.2002.15.10.1008

10.1094/MPMI-21-6-0781

10.1111/j.1365-313X.2008.03575.x

10.1016/j.phytochem.2006.09.027

10.1094/MPMI-18-0771

10.1094/MPMI.1998.11.5.393

10.1111/j.1365-313X.2011.04810.x

10.1105/tpc.108.059014

10.1105/tpc.105.035410

10.1016/j.cub.2012.09.044

10.1094/MPMI-20-3-0321

10.1186/1471-2229-9-10

10.1007/s004250050605

10.1094/MPMI-01-11-0019

10.1007/s00425-008-0877-z

10.1105/tpc.108.062414

10.1073/pnas.0910081107

10.1105/tpc.111.086389

10.1104/pp.111.186635

10.1104/pp.104.056572

10.1104/pp.105.069054

10.1073/pnas.1200407109

10.1073/pnas.0709338105

10.1094/MPMI.2001.14.6.737

10.1093/nar/gkf685

10.1007/s10886-012-0134-6

10.1105/tpc.107.053975

10.1105/tpc.105.032714

10.1016/j.cub.2011.06.044

10.1111/j.1469-8137.2009.03116.x

10.1016/j.phytochem.2006.09.029

10.1111/j.1365-313X.2012.05099.x

10.1126/science.1093038

10.1371/journal.pone.0064377

10.1371/journal.pgen.1004078

10.1111/j.1365-313X.2007.03069.x

10.1105/tpc.014183

10.1105/tpc.111.089771

10.1104/pp.105.070326

10.1038/nature09622

10.1094/MPMI.2004.17.10.1063

10.1111/j.1469-8137.2010.03509.x

10.1104/pp.106.093021

10.1007/s00572-006-0099-9

10.1105/tpc.110.075861

10.1105/tpc.106.048264

10.1105/tpc.113.116921

10.1073/pnas.0400595101

10.1073/pnas.0402186101

10.1371/journal.pone.0016463

10.1093/nar/gkl639

10.1094/MPMI-06-10-0146

10.1093/mp/sst090

10.1111/j.1365-313X.2010.04415.x

10.1104/pp.107.099978

10.1038/nrmicro2990

OliverosJ2007.VENNY. An interactive tool for comparing lists with Venn Diagrams. [WWW document] URLhttp://bioinfogp.cnb.csic.es/tools/venny/index.html

10.1094/MPMI-22-12-1577

10.1111/j.1365-313X.2009.04072.x

10.4161/psb.22999

10.1093/bioinformatics/btp616

10.1074/mcp.M112.019208

10.1111/tpj.12442

10.1111/jipb.12155

10.1104/pp.107.097980

10.1111/j.1365-313X.2011.04834.x

10.1126/science.1111025

10.1104/pp.105.072132

10.1105/tpc.114.131326

10.1094/MPMI-09-10-0220

10.1105/tpc.111.091827

10.1093/pcp/pct114

10.1186/1471‐2164‐15‐312

10.1111/j.1365-313X.2004.02016.x

10.1111/j.1469-8137.2011.03948.x

10.1073/pnas.1313452110

10.1371/journal.pone.0044742

10.1016/j.phytochem.2006.09.033

10.1104/pp.105.060459

10.1186/gb-2002-3-7-research0034

10.1038/nrg2484

10.1016/j.cub.2012.09.043

10.1105/tpc.105.038232

10.1094/MPMI.2004.17.12.1385

10.1094/MPMI.2003.16.4.306

10.1073/pnas.1113992109

10.1073/pnas.1011957107

10.1038/nature10625

10.1111/tpj.12723