Combined evaluation of bone marrow aspirate and biopsy is superior in the prognosis of multiple myeloma
Tóm tắt
Estimation of plasma cell infiltrates in bone marrow aspirates (BMA) and bone marrow biopsy (BMB) is a standard method in the diagnosis and monitoring of multiple myeloma (MM). Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of the study was to compare the percentage of plasma cells obtained by both methods with the patient clinical parameters and survival. This retrospective study included BMA and BMB of 59 MM patients. The conventional differential count was determined in BMA to estimate the percentage and cytologic grade of plasma cells. The pattern of neoplastic infiltration and percentage of plasma cells were estimated on CD138 immunostained BMB slides microscopically and by computer-assisted image analysis (CIA). Significantly higher values of plasma cell infiltrates were observed in pathologist (47.7 ± 24.8) and CIA (44.1 ± 30.6) reports in comparison with cytologist analysis (30.6 ± 17.1; P < 0.001 and P < 0.0048, respectively). BMB assessment by pathologist counting and using CIA showed strongest correlation (r = 0.8; P < 0.0001). Correlation was also observed between the pathologist and cytologist counts (r = 0.321; P = 0.015) as well as comparing the percentage of plasma cells in BMA and CIA (r = 0.27; P = 0.05). Patients with clinical stage I/II had a significantly lower CIA plasma cell count than those with clinical stage III (P = 0.008). Overall survival was shorter in patients with more than 25% of atypical plasma cell morphology estimated in BMA (P = 0.05) and a higher percentage of tumor cell infiltrates estimated by the pathologist and CIA (P = 0.0341 and P = 0.013, respectively). Study results suggested the combined analyses to be useful as a routine procedure to achieve more accurate and informative diagnostic data.
Tài liệu tham khảo
Rajkumar SV, Fonseca R, Dispenzieri A: Methods for estimation of bone marrow plasma cell involvement in myeloma: predictive value for response and survival in patients undergoing autologous stem cell transplantation. Am J Hematol. 2001, 68: 269-275. 10.1002/ajh.10003.
Provan D, Singer CRJ, Baglin T: Oxford handbook of clinical haematology. 2006, Oxford: Oxford University Press, 266-Second
Swerdlow SH, Campo E, Harris NL: WHO Classification of Tumours of tumours of Haematopoietic and Lymphoid Tissues. 2008, Lyon: IARC Press, 4
Sukpanichnant S, Cousar JB, Leelasiri A: Diagnostic criteria and histologic grading in multiple myeloma: histologic and immunohistologic analysis of 176 cases with clinical correlation. Hum Pathol. 1994, 25: 308-318. 10.1016/0046-8177(94)90204-6.
Charles KS, Winfield DA, Angel C: Audit of bone marrow aspirates and trephine biopsies in multiple myeloma - a single centre study. Clin Lab Haematol. 2004, 26: 403-406. 10.1111/j.1365-2257.2004.00646.x.
Wei A, Westerman D, Feleppa F: Bone marrow plasma cell microaggregates detected by immunohistology predict earlier relapse in patients with minimal disease after high-dose therapy for myeloma. Haematologica. 2005, 90: 1147-1149.
Brunning R, McKenna RW: Atlas of tumor pathology. Tumors of the bone marrow. 1994, Washington, DC: Armed Forces Institute of Pathology, American Registry of Pathology, 323-367.
Bartl R, Frisch B, Fateh-Moghadam A: Histologic classification and staging of multiple myeloma. A retrospective and prospective study of 674 cases. Am J Clin Pathol. 1987, 87: 342-355.
Carter A, Hocherman I, Linn S: Prognostic significance of plasma cell morphology in multiple myeloma. Cancer. 1987, 60: 1060-1065. 10.1002/1097-0142(19870901)60:5<1060::AID-CNCR2820600522>3.0.CO;2-3.
Subramanian R, Basu D, Dutta TK: Prognostic significance of bone marrow histology in multiple myeloma. Indian J Cancer. 2009, 46: 40-45. 10.4103/0019-509X.48594.
International Myeloma Working Group: Criteria for the classification of monoclonal gammapathias, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003, 121: 749-757. 10.1046/j.1365-2141.2003.04355.x.
Blade J, Samson D, Reece D: Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 1998, 102: 1115-1123. 10.1046/j.1365-2141.1998.00930.x.
Handa U, Chhabra S, Mohan H: Plasma cell tumours: cytomorphological features in a series of 12 cases diagnosed on fine needle aspiration cytology. Cytopathology. 2009,
Costes V, Magen V, Legoluffe E: The Mi 15 monoclonal antibody (anti-syndecan-1) is reliable marker for quantifying plasma cells in paraffin-embedded bone marrow biopsy specimens. Hum Pathol. 1999, 30: 1405-1411. 10.1016/S0046-8177(99)90160-0.
Chilosi M, Adami F, Lestani M: CD 138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol. 1999, 12: 1101-1106.
Bayer-Garner IB, Sanderson RD, Dhodapkar MV: Syndecan-1(CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. od Pathol. 2001, 14: M1052-1058.
Ng AP, Wei A, Bhurani D: The sensitivity of CD138 immunostaining of bone marrow trephine specimens for quantifying marrow involvement in MGUS and myeloma, including samples with a low percentage of plasma cells. Haematologica. 2006, 91: 972-975.
Al-Quran SZ, Yang L, Magill JM: Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry. Hum Pathol. 2007, 38: 1779-1787. 10.1016/j.humpath.2007.04.010.
Joshi R, Horncastle D, Elderfield K: Bone marrow trephine combined with immunohistochemistry is superior to bone marrow aspirate in follow-up of myeloma patients. J Clin Pathol. 2008, 61: 213-216. 10.1136/jcp.2007.049130.
Went P, Mayer S, Oberholzer M: Plasma cell quantification in bone marrow by computer-assisted image analysis. Histol Histopathol. 2006, 21: 951-956.
Fabian P, Moulis M: Options for histological examination of bone marrow during diagnosis of multiple myeloma. Vnitr Lek. 2006, 52 (Suppl 2): 66-70.
Singhal N, Singh T, Singh ZN: Histomorphology of multiple myeloma on bone marrow biopsy. Indian J Pathol Microbiol. 2004, 47: 359-363.
Schambeck CM, Bartl R, Höchtlen-Vollmar W: Characterization of myeloma cells by means of labeling index, bone marrow histology, and serum beta 2-microglobulin. Am J Clin Pathol. 1996, 106: 64-68.
Cetto GL, Iannucci A, Perini A: Bone marrow evaluation: the relative merits of particle sections and smear preparations. Appl Pathol. 1983, 1: 181-193.
Scudla V, Adam Z: Diagnostic importance and pitfalls of evaluating bone marrow smear preparation in multiple myeloma. Vnitr Lek. 2006, 52 (Suppl 2): 55-65.
Buss DH, Prichard RW, Hartz JW: Comparison of the usefulness of bone marrow sections and smears in diagnosis of multiple myeloma. Hematol Pathol. 1987, 1: 35-43.
Terpstra WE, Lokhorst HM, Blomjous F: Comparison of plasma cell infiltration in bone marrow biopsies and aspirates in patients with multiple myeloma. Br J Haematol. 1992, 82: 46-49. 10.1111/j.1365-2141.1992.tb04592.x.