Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging

Materials - Tập 10 Số 8 - Trang 952
Justine Muller1, Chelo González‐Martínez1, Amparo Chiralt1
1Universidad Politécnica de Valencia, IIAD, Camino de Vera, s/n, 46022 València, Spain

Tóm tắt

The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films.

Từ khóa


Tài liệu tham khảo

(2017, May 01). Plastic Europe—Association of Plastics Manufacturers, Plastic—The Facts 2016. Available online: http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2.

(2017, May 01). Food Packaging Forum—Food Packaging Health, Food Packaging Materials. Available online: http://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials.

Geueke, B. (2017, May 01). Dossier—Bioplastics as Food Contact Materials. Available online: http://www.foodpackagingforum.org/fpf-2016/wp-content/uploads/2015/11/FPF_Dossier06_Bioplastics.pdf.

Armentano, 2013, Multifunctional nanostructured PLA materials for packaging and tissue engineering, Prog. Polym. Sci., 38, 1720, 10.1016/j.progpolymsci.2013.05.010

Xiao, L., Wang, B., Yang, G., and Gauthier, M. (2012). Poly(lactic acid)-Based Biomaterials: Synthesis, Modification and Applications, INTECH Open Access Publisher.

Auras, 2004, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043

Mattioli, 2013, Structure, gas-barrier properties and overall migration of Poly(lactic acid) films coated with hydrogenated amorphous carbon layers, Carbon, 63, 274, 10.1016/j.carbon.2013.06.080

Rhim, 2009, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT Food Sci. Technol., 42, 612, 10.1016/j.lwt.2008.02.015

Fortunati, 2015, Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites, Mater. Sci. Eng. C, 47, 394, 10.1016/j.msec.2014.11.007

Gui, 2012, Novel polyethylene glycol-based polyester-toughened polylactide, Mater. Lett., 71, 63, 10.1016/j.matlet.2011.12.045

Rasal, 2010, Poly(lactic acid) modifications, Prog. Polym. Sci., 35, 338, 10.1016/j.progpolymsci.2009.12.003

Varpomaa, 1996, Modification of Poly(L-lactides) by blending: Mechanical and hydrolytic behavior, Macromol. Chem. Phys., 197, 1503, 10.1002/macp.1996.021970427

Lim, 2008, Processing technologies for Poly(lactic acid), Prog. Polym. Sci., 33, 820, 10.1016/j.progpolymsci.2008.05.004

Igarzabal, 2013, Soy protein–Poly(lactic acid) bilayer films as biodegradable material for active food packaging, Food Hydrocoll., 33, 289, 10.1016/j.foodhyd.2013.03.010

Jamshidian, 2013, Antioxidants release from solvent-cast PLA film: Investigation of PLA antioxidant-active packaging, Food Bioprocess Technol., 6, 1450, 10.1007/s11947-012-0830-9

Qin, 2015, Characterization of antimicrobial Poly(lactic acid)/Poly(trimethylene carbonate) films with cinnamaldehyde, J. Mater. Sci., 50, 1150, 10.1007/s10853-014-8671-8

Ahmed, 2016, Antimicrobial, rheological, and thermal properties of plasticized polylactide films incorporated with essential oils to Inhibit Staphylococcus aureus and Campylobacter jejuni, J. Food Sci., 81, 419, 10.1111/1750-3841.13193

Hughes, 2012, Improved flexibility of thermally stable poly-lactic acid (PLA), Carbohydr. Polym., 88, 165, 10.1016/j.carbpol.2011.11.078

Erdohan, 2013, Characterization of antimicrobial polylactic acid based films, J. Food Eng., 119, 308, 10.1016/j.jfoodeng.2013.05.043

Baiardo, 2003, Thermal and mechanical properties of plasticized Poly(L-lactic acid), J. Appl. Polym. Sci., 90, 1731, 10.1002/app.12549

Coltelli, 2008, Poly(lactic acid) properties as a consequence of Poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250, 10.1002/app.28512

Grigale, 2010, Biodegradable Plasticized Poly(lactic acid) Films, Mater. Sci. Appl. Chem., 21, 97

Ljungberg, 2002, The effects of plasticizers on the dynamic mechanical and thermal properties of Poly(lactic acid), J. Appl. Polym. Sci., 86, 1227, 10.1002/app.11077

Tee, 2014, Toughening Poly(lactic acid) and Aiding the Melt-compounding with Bio-sourced Plasticizers, Agric. Agric. Sci. Procedia, 2, 289

Chieng, 2013, Plasticized Poly(lactic acid) with low molecular weight Poly(ethylene glycol): Mechanical, thermal, and morphology properties, J. Appl. Polym. Sci., 130, 4576, 10.1002/app.39742

Choi, 2013, Plasticization of Poly(lactic acid) (PLA) through chemical grafting of Poly(ethylene glycol) (PEG) via in situ reactive blending, Eur. Polym. J., 49, 2356, 10.1016/j.eurpolymj.2013.05.027

Pluta, 2006, Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties, J. Polym. Sci. Part B Polym. Phys., 44, 299, 10.1002/polb.20694

Ocio, 2014, Antimicrobial beeswax coated polylactide films with silver control release capacity, Int. J. Food Microbiol., 174, 39, 10.1016/j.ijfoodmicro.2013.12.028

Bonilla, 2013, Effects of chitosan on the physicochemical and antimicrobial properties of PLA films, J. Food Eng., 119, 236, 10.1016/j.jfoodeng.2013.05.026

Muller, 2016, Influence of plasticizers on thermal properties and crystallization behaviour of Poly(lactic acid) films obtained by compression moulding, Polym. Int., 65, 970, 10.1002/pi.5142

Karbowiak, 2016, Impact of corona treatment on PLA film properties, Polym. Degrad. Stab., 132, 109, 10.1016/j.polymdegradstab.2016.03.020

Arrieta, 2015, Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends, Carbohydr. Polym., 121, 265, 10.1016/j.carbpol.2014.12.056

Pavasupree, 2011, Preparation of Polymer Blends between Poly(L-lactic acid), Poly(butylene succinate-co-adipate) and Poly(butylene adipate-co-terephthalate) for Blow Film Industrial Application, Energy Procedia, 9, 581, 10.1016/j.egypro.2011.09.068

Qin, 2015, Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus), Postharvest Biol. Technol., 99, 73, 10.1016/j.postharvbio.2014.07.018

Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J.M., and Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly(Lactic Acid)/Poly(Butylene Succinate) Films. Materials, 10.

Sun, 2008, Thermal degradation and physical aging of Poly(lactic acid) and its blends with starch, Polym. Eng. Sci., 48, 829, 10.1002/pen.21019

Ayana, 2014, Highly exfoliated eco-friendly thermoplastic starch (TPS)/Poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay, Carbohydr. Polym., 110, 430, 10.1016/j.carbpol.2014.04.024

Bie, 2013, The properties of antimicrobial films derived from Poly(lactic acid)/starch/chitosan blended matrix, Carbohydr. Polym., 98, 959, 10.1016/j.carbpol.2013.07.004

Huneault, 2007, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, 48, 270, 10.1016/j.polymer.2006.11.023

Hwang, 2012, Grafting of maleic anhydride on Poly(L-lactic acid). Effects on physical and mechanical properties, Polym. Test., 31, 333, 10.1016/j.polymertesting.2011.12.005

Jariyasakoolroj, 2014, Silane modified starch for compatible reactive blend with Poly(lactic acid), Carbohydr. Polym., 106, 255, 10.1016/j.carbpol.2014.02.018

Lamure, 2012, How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer—Co-grinding enhances use properties of Renewable PLA–starch composites, Chem. Eng. Process. Process Intensif., 56, 1, 10.1016/j.cep.2012.03.005

Phetwarotai, 2012, Characteristics of Biodegradable Polylactide/Gelatinized Starch Films: Effects of Starch, Plasticizer, and Compatibilizer, J. Appl. Polym. Sci., 126, 162, 10.1002/app.36736

Sanyang, 2016, Development and characterization of sugar palm starch and Poly(lactic acid) bilayer films, Carbohydr. Polym., 146, 36, 10.1016/j.carbpol.2016.03.051

Teixeira, 2012, Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with Poly(lactic acid), Ind. Crops Prod., 37, 61, 10.1016/j.indcrop.2011.11.036

Wang, 2002, Mechanical properties of Poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate, J. Appl. Polym. Sci., 84, 1257, 10.1002/app.10457

Wang, 2007, Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends, Starch-Stärke, 59, 409, 10.1002/star.200700617

Wokadala, 2014, Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch, Carbohydr. Polym., 112, 216, 10.1016/j.carbpol.2014.05.095

Xiong, 2013, Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends, Carbohydr. Polym., 94, 235, 10.1016/j.carbpol.2013.01.038

Yokesahachart, 2011, Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with Poly(lactic acid), Carbohydr. Polym., 83, 22, 10.1016/j.carbpol.2010.07.020

Wertz, J.L. (2017, May 01). L’amidon et le PLA: Deux Biopolymères sur le Marché, Note de Synthèse 18 Janvier 2011. Available online: http://www.valbiom.be/files/library/Docs/Biopolymeres/amidonpla20111297333283.pdf.

Campos, 2011, Development of edible films and coatings with antimicrobial activity, Food Bioprocess Technol., 4, 849, 10.1007/s11947-010-0434-1

Durrani, 1995, Physical characterisation of amylopectin gels, Polym. Gels Netw., 3, 1, 10.1016/0966-7822(94)00005-R

Carvalho, A.J. (2008). Starch: Major Sources, Properties and Applications as Thermoplastic Materials, Elsevier.

Talens, 2014, Effect of the incorporation of surfactants on the physical properties of corn starch films, Food Hydrocoll., 38, 66, 10.1016/j.foodhyd.2013.11.011

Acosta, 2015, Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids, Food Hydrocoll., 49, 135, 10.1016/j.foodhyd.2015.03.015

Souza, 2013, Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties, LWT Food Sci. Technol., 54, 346, 10.1016/j.lwt.2013.06.017

1994, Edible coatings and films based on polysaccharides, Edible Coatings and Films to Improve Food Quality, Volume 1, 322

Chakraborty, 2005, Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering, Carbohydr. Polym., 60, 475, 10.1016/j.carbpol.2005.03.011

Moreno, 2014, Physical and bioactive properties of corn starch—Buttermilk edible films, J. Food Eng., 141, 27, 10.1016/j.jfoodeng.2014.05.015

Shirai, 2013, Development of biodegradable flexible films of starch and Poly(lactic acid) plasticized with adipate or citrate esters, Carbohydr. Polym., 92, 19, 10.1016/j.carbpol.2012.09.038

Talens, 2014, Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding, Carbohydr. Polym., 109, 155, 10.1016/j.carbpol.2014.03.059

Versino, 2015, Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development, Ind. Crops Prod., 65, 79, 10.1016/j.indcrop.2014.11.054

Villar, 2014, Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan, LWT Food Sci. Technol., 57, 106, 10.1016/j.lwt.2014.01.024

Tai, 2017, Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity, Carbohydr. Polym., 163, 236, 10.1016/j.carbpol.2017.01.082

Fabra, 2012, Edible and Biodegradable Starch Films: A Review, Food Bioprocess Technol., 5, 2058, 10.1007/s11947-012-0835-4

Cano, 2016, Development and characterization of active films based on starch-PVA, containing silver nanoparticles, Food Packag. Shelf Life, 10, 16, 10.1016/j.fpsl.2016.07.002

Castillo, 2013, Thermoplastic starch films reinforced with talc nanoparticles, Carbohydr. Polym., 95, 664, 10.1016/j.carbpol.2013.03.026

Cova, 2012, Glass transition temperatures of cassava starch–whey protein concentrate systems at low and intermediate water content, Carbohydr. Polym., 87, 1375, 10.1016/j.carbpol.2011.09.035

Morey, 2015, Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding, Carbohydr. Polym., 127, 282, 10.1016/j.carbpol.2015.03.080

Lafargue, D. (2007). Etude et Élaboration de Films à Base de Polysaccharides Pour la Fabrication de Gélules Pharmaceutiques. [Ph.D. Thesis, Université de Nantes]. Available online: http://prodinra.inra.fr/ft?id={F9B4C551-2328-4C3B-8319-820262CA467D}}.

Skeist, I. (1977). Handbook of Adhesives, Chapter 12—Starch Based Adhesives, Van Nostrand Reinhold Co.. [2nd ed.].

Elvers, B., Hawkins, S., and Russey, W. (1994). Ullmann’s Encyclopedia of Industrial Chemistry, Starch and Other Polysaccharides, VCH Verlagsgesellschaft GmbH. [5th ed.].

Whistler, R.L., Bemiller, J.N., and Paschall, E.F. (1984). Chemistry and Technology, Starch, Academic. [2nd ed.].

Thomas, D.J., and Atwell, W.A. (1999). Starches, Eagan Press Handbook Series.

Kalichevsky, 1993, The effect of fructose and water on the glass transition of amylopectin, Carbohydr. Polym., 20, 107, 10.1016/0144-8617(93)90085-I

Mathew, 2002, Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties, Biomacromolecules, 3, 1101, 10.1021/bm020065p

Carvalho, 2006, The effect of plasticizers on thermoplastic starch compositions obtained by melt processing, Carbohydr. Polym., 63, 417, 10.1016/j.carbpol.2005.09.017

Huang, 2005, Ethanolamine as a novel plasticiser for thermoplastic starch, Polym. Degrad. Stab., 90, 501, 10.1016/j.polymdegradstab.2005.04.005

Ma, 2004, Formamide as the plasticizer for thermoplastic starch, J. Appl. Polym. Sci., 93, 1769, 10.1002/app.20628

Perry, 2000, The role of plasticization in starch granule assembly, Biomacromolecules, 1, 424, 10.1021/bm0055145

Bastos, 2009, Hydrophobic corn starch thermoplastic films produced by plasma treatment, Ultramicroscopy, 109, 1089, 10.1016/j.ultramic.2009.03.031

Turalija, 2016, Antimicrobial PLA films from environment friendly additives, Composites B, 102, 94, 10.1016/j.compositesb.2016.07.017

(2017, August 15). Commission Communication on the Results of the Risk Evaluation and the Risk Reduction Strategies for the Substances: Piperazine; Cyclohexane; Methylenediphenyl Diisocyanate; But-2yne-1,4-diol; Methyloxirane; Aniline; 2-Ethylhexylacrylate; 1,4-Dichlorobenzene; 3,5-dinitro-2,6-dimethyl-4-tert- butylacetophenone; Di-(2-ethylhexyl)phthalate; Phenol; 5-tert-butyl-2,4,6-trinitro-m-xylene. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008XC0207(02).

Abdillahi, 2013, Influence of citric acid on thermoplastic wheat flour/Poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms, Ind. Crops Prod., 50, 104, 10.1016/j.indcrop.2013.06.028

Bocz, 2014, Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system, Polym. Degrad. Stab., 106, 63, 10.1016/j.polymdegradstab.2013.10.025

Cai, 2011, Isothermal crystallization kinetics of thermoplastic starch/Poly(lactic acid) composites, Carbohydr. Polym., 86, 941, 10.1016/j.carbpol.2011.05.044

Orozco, 2009, Preparation and characterization of Poly(lactic acid)-g-maleic anhydride+starch blends, Macromol. Symp., 277, 69, 10.1002/masy.200950309

Ren, 2009, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, Poly(lactic acid) and Poly(butylene adipate-co-terephthalate), Carbohydr. Polym., 77, 576, 10.1016/j.carbpol.2009.01.024

Soares, 2013, Thermoplastic starch/Poly(lactic acid) sheets coated with cross-linked chitosan, Polym. Test., 32, 94, 10.1016/j.polymertesting.2012.09.005

Wang, 2008, Influence of formamide and water on the properties of thermoplastic starch/Poly(lactic acid) blends, Carbohydr. Polym., 71, 109, 10.1016/j.carbpol.2007.05.025

Xiong, 2013, Preparation and characterization of Poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydr. Polym., 92, 810, 10.1016/j.carbpol.2012.09.007

Xiong, 2013, The properties of Poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride, Carbohydr. Polym., 95, 77, 10.1016/j.carbpol.2013.02.054

Xiong, 2014, Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials, Compos. Sci. Technol., 94, 16, 10.1016/j.compscitech.2014.01.007

Zuo, 2014, Preparation and characterization of dry method esterified starch/polylactic acid composite materials, Int. J. Biol. Macromol., 64, 174, 10.1016/j.ijbiomac.2013.11.026

Muller, 2017, Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding, Eur. Polym. J., 95, 56, 10.1016/j.eurpolymj.2017.07.019

Svagan, 2012, Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties, Biomacromolecules, 13, 397, 10.1021/bm201438m

Wang, 2008, Biopolymer/montmorillonite nanocomposite: Preparation, drug-controlled release property and cytotoxicity, Nanotechnology, 19, 065707, 10.1088/0957-4484/19/6/065707

Requena, 2016, Poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate) active bilayer films obtained by compression moulding and applying essential oils at the interface, Polym. Int., 65, 883, 10.1002/pi.5091

Rhim, 2007, Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid, LWT Food Sci. Technol., 40, 232, 10.1016/j.lwt.2005.10.002

Martucci, 2010, Three-layer sheets based on gelatin and Poly(lactic acid), part 1: Preparation and properties, J. Appl. Polym. Sci., 118, 3102, 10.1002/app.32751

Bonifacio, 2017, Gallium-modified chitosan/Poly(acrylic acid) bilayer coatings for improved titanium implant performances, Carbohydr. Polym., 166, 348, 10.1016/j.carbpol.2017.03.009

Debeaufort, 2000, Lipid hydrophobicity and physical state effects on the properties of bilayer edible films, J. Membr. Sci., 180, 47, 10.1016/S0376-7388(00)00532-9

Ferreira, 2016, Development and characterization of bilayer films of FucoPol and chitosan, Carbohydr. Polym., 147, 8, 10.1016/j.carbpol.2016.03.089

Boutevin, 1999, Bilayer films composed of wheat gluten and functionalized polyethylene: Permeability and other physical properties, Polym. Bull., 43, 441, 10.1007/s002890050633

2015, Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein, Croat. Chem. Acta, 88, 461, 10.5562/cca2768