Combating the menace of antimicrobial resistance in Africa: a review on stewardship, surveillance and diagnostic strategies

Bashar Haruna Gulumbe1, Usman Abubakar Haruna2, Joseph U. Almazan2, Ibrahim Haruna Ibrahim3, Abdullahi Adamu Faggo4, Abbas Yusuf Bazata1
1Department of Microbiology, Federal University Birnin Kebbi, Kalgo, Kebbi State, Nigeria
2Department of Medicine, Nazarbayev University School Medicine, Nursultan, Kazakhstan
3Research Center for Cancer Biology, Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung City, 406040, Taiwan
4Department of Microbiology, Bauchi State University, Gadau, Bauchi State, Nigeria

Tóm tắt

AbstractThe emergence of antibiotic-resistant pathogens has threatened not only our ability to deal with common infectious diseases but also the management of life-threatening complications. Antimicrobial resistance (AMR) remains a significant threat in both industrialized and developing countries alike. In Africa, though, poor clinical care, indiscriminate antibiotic use, lack of robust AMR surveillance programs, lack of proper regulations and the burden of communicable diseases are factors aggravating the problem of AMR. In order to effectively address the challenge of AMR, antimicrobial stewardship programs, solid AMR surveillance systems to monitor the trend of resistance, as well as robust, affordable and rapid diagnostic tools which generate data that informs decision-making, have been demonstrated to be effective. However, we have identified a significant knowledge gap in the area of the application of fast and affordable diagnostic tools, surveillance, and stewardship programs in Africa. Therefore, we set out to provide up-to-date information in these areas. We discussed available hospital-based stewardship initiatives in addition to the role of governmental and non-governmental organizations. Finally, we have reviewed the application of various phenotypic and molecular AMR detection tools in both research and routine laboratory settings in Africa, deployment challenges and the efficiency of these methods.

Từ khóa


Tài liệu tham khảo

Murray CJ, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.

Tadesse BT, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):616. https://doi.org/10.1186/s12879-017-2713-1.

Gulumbe BH, Faggo AA. Epidemiology of Multidrug-resistant Organisms in Africa. Mediterr J Infection Microbes Antimicrobials. 2019. https://doi.org/10.4274/mjima.galenos.2019.2019.25.

Okeke IN, Aboderin OA, Byarugaba DK, Ojo KK, Opintan JA. Growing Problem of Multidrug-Resistant Enteric Pathogens in Africa. Emerg Infect Dis. 2007;13(11):1640–6. https://doi.org/10.3201/eid1311.070674.

Wells V, Piddock LJV. Addressing antimicrobial resistance in the UK and Europe. Lancet Infect Dis. 2017;17(12):1230–1. https://doi.org/10.1016/S1473-3099(17)30633-3.

Do NTT, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Health. 2016;4(9):e633–41. https://doi.org/10.1016/S2214-109X(16)30142-5.

World Health Organization, “Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report,” 2021. Available: https://apps.who.int/iris/bitstream/handle/10665/341666/9789240027336-eng.pdf Accessed 01 Nov 2022.

World Health Organization (WHO), “Library of AMR national action plans,” 2022. https://www.who.int/teams/surveillance-prevention-control-AMR/national-action-plan-monitoring-evaluation/library-of-national-action-plans (Accessed 01 Nov 2022).

WHO. “Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self-assessment Survey (TrACSS). 2020.

Jayatilleke K. Challenges in Implementing Surveillance Tools of High-Income Countries (HICs) in Low Middle Income Countries (LMICs). Curr Treat Options Infect Dis. 2020;12(3):191–201. https://doi.org/10.1007/s40506-020-00229-2.

Craig J, Hiban K, Frost I, Geetanjali K, Alimi Y, Varma J. Comparison of national antimicrobial treatment guidelines, African Union. Bull World Health Organ. 2022;100(1):50–5. https://doi.org/10.2471/BLT.21.286689.

Lim C, et al. Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middle-income countries. Clin Microbiol Infect. 2021;27(10):1391–9. https://doi.org/10.1016/j.cmi.2021.05.037.

E. Y. Klein et al., “Global increase and geographic convergence in antibiotic consumption between 2000 and 2015,” Proceedings of the National Academy of Sciences. 2018;115(15). https://doi.org/10.1073/pnas.1717295115.

World Health Organization. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low-and-Middle-Income countries A Who Practical Toolkit. 2019.

Gasson J, Blockman M, Willems B. Antibiotic prescribing practice and adherence to guidelines in primary care in the Cape Town Metro District, South Africa. S Afr Med J. 2018;108(4):304. https://doi.org/10.7196/SAMJ.2018.v108i4.12564.

Umar L, Isah A, Musa S, Umar B. Prescribing pattern and antibiotic use for hospitalized children in a Northern Nigerian Teaching Hospital. Ann Afr Med. 2018;17(1):26. https://doi.org/10.4103/aam.aam_44_17.

Akpan MR, Isemin NU, Udoh AE, Ashiru-Oredope D. Implementation of antimicrobial stewardship programmes in African countries: a systematic literature review. J Glob Antimicrob Resist. 2020;22:317–24. https://doi.org/10.1016/j.jgar.2020.03.009.

WHO. Global database for antimicrobial resistance country self-assessment. 2018.

WHO. National Action Plan on Prevention and Containment of Antimicrobial Resistance, 2017 -2022. 2022.

Hall JW, et al. The Mbeya Antimicrobial Stewardship Team: Implementing Antimicrobial Stewardship at a Zonal-Level Hospital in Southern Tanzania. Pharmacy. 2020;8(2):107. https://doi.org/10.3390/pharmacy8020107.

Junaid E, Jenkins L, Swanepoel H, North Z, Gould T. Antimicrobial stewardship in a rural regional hospital – growing a positive culture. S Afr Med J. 2018;108(7):546. https://doi.org/10.7196/SAMJ.2018.v108i7.13149.

Mustafa F, Koekemoer LA, Green RJ, Turner AC, Becker P, van Biljon G. Successful antibiotic stewardship in hospitalised children in a developing nation. J Glob Antimicrob Resist. 2020;23:217–20. https://doi.org/10.1016/j.jgar.2020.09.014.

Messina AP, van den Bergh D, Goff DA. Antimicrobial Stewardship with Pharmacist Intervention Improves Timeliness of Antimicrobials Across Thirty-three Hospitals in South Africa. Infect Dis Ther. 2015;4(S1):5–14. https://doi.org/10.1007/s40121-015-0082-x.

Engler D, Meyer JC, Schellack N, Kurdi A, Godman B. Antimicrobial Stewardship Activities in Public Healthcare Facilities in South Africa: A Baseline for Future Direction. Antibiotics. 2021;10(8):996. https://doi.org/10.3390/antibiotics10080996.

Elton L, et al. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob Resist Infect Control. 2020;9(1):145. https://doi.org/10.1186/s13756-020-00800-y.

United Nations, “Civil Society,” 2022. https://www.un.org/en/civil-society/page/about-us (Accessed 28 Jun 2022).

Fraser JL. et al. “Antimicrobial resistance control efforts in Africa: a survey of the role of Civil Society Organisations,” Glob Health Action. 2021;14(1). https://doi.org/10.1080/16549716.2020.1868055.

React group. Ghana’s national policy. 2020.

Harant A. Assessing transparency and accountability of national action plans on antimicrobial resistance in 15 African countries. Antimicrob Resist Infect Control. 2022;11(1):15. https://doi.org/10.1186/s13756-021-01040-4.

Coll-Seck AW, Seck I, Sow AL, Ndoye B, Ngom M, Diack PA. Governance Against Antimicrobial Resistance In Africa: Confronting Amr When Resources Are Limited – The Example Of Senegal. 2017.

Perovic O. Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria (PACCARB). 2019.

WHO. South African Antimicrobial Resistance National Strategy Framework; A One Health Approach 2018 – 2024. 2018.

Africa CDC. African Union Heads of State and Government Endorse African Common Position on Controlling Antimicrobial Resistance. 2020.

Asante K, B van der Puije, Shumba E, Ondoa P. ASLM Continues the Fight Against AMR with Fleming Fund and AMRSNET. 2020.

Africa CDC. African Antibiotic Treatment Guidelines for Common Bacterial Infections and Syndromes. 2021.

Varshney V. “Antibiotic resistance: How to tackle AMR in Africa. Pan-Africa experts meet to find solutions to the antimicrobial resistance mess.,” 2020. Available: https://www.downtoearth.org.in/news/health-in-africa/antibiotic-resistance-how-to-tackle-amr-in-africa-68903 Accessed 27 Jun 2022.

Kariuki S, Keddy KH, Antonio M, Okeke IN. “Antimicrobial resistance surveillance in Africa: Successes, gaps and a roadmap for the future,” Afr J Lab Med. 2018;7(2). https://doi.org/10.4102/ajlm.v7i2.924.

Bamford C, Brink A, Govender N, Lewis A, Perovic O. Part V. GARP: Surveillance activities. South African Medical Journal. 2011;101(8):579-82. https://doi.org/10.7196/SAMJ.5113.

Johnson AP. Surveillance of antibiotic resistance Philosophical Transactions of the Royal Society B. Biol Sci. 2015;370(1670):20140080. https://doi.org/10.1098/rstb.2014.0080.

Varma JK. et al. “Africa Centres for Disease Control and Prevention’s framework for antimicrobial resistance control in Africa.” Afr J Lab Med. 2018;7(2). https://doi.org/10.4102/ajlm.v7i2.830.

Seale AC, Gordon NC, Islam J, Peacock SJ, Scott JAG. AMR Surveillance in low and middle-income settings - A roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2017;2:92. https://doi.org/10.12688/wellcomeopenres.12527.1.

WHO, “WHO publishes list of bacteria for which new antibiotics are urgently needed,” 2017. Available: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Accessed: 27 Jun 2022.

Ibrahim RA. et al. “Antimicrobial resistance surveillance in Ethiopia: Implementation experiences and lessons learned.” Afr J Lab Med. 2018;7(20). https://doi.org/10.4102/ajlm.v7i2.770.

Chaplain D, ben Asutaku B, Mona M, Bulafu D, Aruhomukama D. The need to improve antimicrobial susceptibility testing capacity in Ugandan health facilities: insights from a surveillance primer. Antimicrob Resist Infect Control. 2022;11(1):23. https://doi.org/10.1186/s13756-022-01072-4.

Takah NF, Shrestha P, Peeling R. “The impetus to Africa CDC’s mandate in curbing the rising trend of Antimicrobial Resistance (AMR) in Africa: the launch of the Africa CDC AMR surveillance network during the 8 th advanced course in diagnostics (ACDx).” Pan Afr Med J. 2017;28. https://doi.org/10.11604/pamj.2017.28.271.14388.

Mouiche MMM, et al. Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis. BMC Public Health. 2019;19(1):1135. https://doi.org/10.1186/s12889-019-7450-5.

Vasala A, Hytönen VP, Laitinen OH. “Modern Tools for Rapid Diagnostics of Antimicrobial Resistance,” Front Cell Infect Microbiol. 2020;10. https://doi.org/10.3389/fcimb.2020.00308.

de Angelis G, Grossi A, Menchinelli G, Boccia S, Sanguinetti M, Posteraro B. Rapid molecular tests for detection of antimicrobial resistance determinants in Gram-negative organisms from positive blood cultures: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(3):271–80. https://doi.org/10.1016/j.cmi.2019.11.009.

Gajic I, et al. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics. 2022;11(4):427. https://doi.org/10.3390/antibiotics11040427.

Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics. 2021;10(2):209. https://doi.org/10.3390/antibiotics10020209.

Aworh MK, Kwaga JKP, Hendriksen RS, Okolocha EC, Thakur S. Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrob Resist Infect Control. 2021;10(1):1–13. https://doi.org/10.1186/s13756-021-00930-x.

Elbadawy M, Maghrabi IA, Shohayeb M, S. El, Ashour D. “Iodometric and Molecular Detection of ESBL Production,” Microbial Drug Resistance. 2019;00(October)00. https://doi.org/10.1089/mdr.2016.0181.

Abdeta A, et al. Phenotypic characterization of carbapenem non-susceptible gram-negative bacilli isolated from clinical specimens. PLoS One. 2021;16(12):1–18. https://doi.org/10.1371/journal.pone.0256556.

Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta - lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep. 2021;11:1–8. https://doi.org/10.1038/s41598-021-86570-y.

Obodoechi LO. et al. “Antimicrobial resistance in Escherichia coli isolates from frugivorous ( Eidolon helvum ) and insectivorous ( Nycteris hispida ) bats in Southeast Nigeria , with detection of CTX-M-15 producing isolates.” Comp Immunol Microbiol Infect Dis. 2021;75. https://doi.org/10.1016/j.cimid.2021.101613.

Algammal AM, et al. Prevalence, antimicrobial resistance ( AMR ) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture. 2022;548(P1):737643. https://doi.org/10.1016/j.aquaculture.2021.737643.

Asuming-bediako N, Kunadu AP, Jordan D, Abraham S, Habib I. Prevalence and antimicrobial susceptibility pattern of Campylobacter jejuni in raw retail chicken meat in Metropolitan Accra, Ghana. Int J Food Microbiol. 2022;376:109760. https://doi.org/10.1016/j.ijfoodmicro.2022.109760.

Tanko N, Bolaji RO, Olayinka AT, Olayinka BO. A systematic review on the prevalence of extended-spectrum beta lactamase-producing Gram-negative bacteria in Nigeria. J Glob Antimicrob Resist. 2020;22:488–96. https://doi.org/10.1016/j.jgar.2020.04.010.

Bashir A. et al. “Superbugs-related prolonged admissions in three tertiary hospitals, Kano State, Nigeria.” Pan Afr Med J. 2019;32. https://doi.org/10.11604/pamj.2019.32.166.18481.

Galhano BSP, Ferrari RG, Panzenhagen P, De Jesus ACS, Conte-junior CA. “Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods : A Brief Review of Highlights and Advantages,” Microorganisms. 2021.

Nejjari C, El Achhab Y, Benaouda A, Abdelfattah C. “Antimicrobial resistance among GLASS pathogens in Morocco : an epidemiological scoping review.” BMC Infect Dis. 2022;1–15. https://doi.org/10.1186/s12879-022-07412-4.

Bashir A, et al. Superbugs-related prolonged admissions in three tertiary hospitals, Kano State, Nigeria. Pan Afr Med J. 2019;8688:1–9. https://doi.org/10.11604/pamj.2019.32.166.18481.

Jorgensen JH. Laboratory issues in the detection and reporting of antibacterial resistance. Antimicrobial Resistance. 1997;11(4):785–802.

Baker CN, Stocker SA, Culver DH, Thornsberry C. Comparison of the E Test to Agar Dilution, Broth Microdilution, and Agar Diffusion Susceptibility Testing Techniques by Using a Special Challenge Set of Bacteria. J Clin Microbiol. 1991;29(3):533–8.

Kwazulu-natal I, Africa S. Antimicrobial Resistance Mechanisms, Multilocus Sequence. Antimicrob Agents Chemother. 2021;65(10):1–10.

Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA. 2020;6(3):FSO438. https://doi.org/10.2144/fsoa-2019-0098.

Basha AM, El-sherbiny GM, Mabrouk MI. Phenotypic characterization of the Egyptian isolates ‘ extensively drug-resistant Pseudomonas aeruginosa ’ and detection of their metallo- β -lactamases encoding genes. Springer Open. 2020;8:1–11.

Maclean K, Olpa F, Njamo JP, Serepa-dlamini MH, Kondiah K. Antimicrobial Susceptibility Profiles among Pseudomonas aeruginosa Isolated from Professional SCUBA Divers with Otitis Externa, Swimming Pools and the Ocean at a Diving Operation in South Africa. Pathogens. 2022;11:1–11.

Shinde S, Gupta R, Raut SS, Nataraj G, Mehta PR. Carba NP as a simpler, rapid, cost-effective, and a more sensitive alternative to other phenotypic tests for detection of carbapenem resistance in routine diagnostic laboratories. J Lab Physicians. 2017;9(02):100–3. https://doi.org/10.4103/0974-2727.199628.

Ghani SA, Thomson GK, Snyder JW, Thomson KS. Comparison of the carba NP, modified carba NP, and updated rosco neo-rapid carb kit tests for carbapenemase detection. J Clin Microbiol. 2015;53(11):3539–42. https://doi.org/10.1128/JCM.01631-15.

Literacka E, et al. Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp., and its practical use in the routine work of a national reference laboratory for susceptibility testing. Eur J Clin Microbiol Infect Dis. 2017;36(11):2281–7. https://doi.org/10.1007/s10096-017-3062-0.

Codjoe FS, Donkor ES. Carbapenem Resistance : A Review. Med Sci (Basel). 2018;6(1):1–28. https://doi.org/10.3390/medsci6010001.

Olowo-okere A, et al. Phenotypic and genotypic characterization of clinical carbapenem-resistant Enterobacteriaceae isolates from Sokoto, northwest Nigeria. New Microbes New Infect. 2020;37:100727. https://doi.org/10.1016/j.nmni.2020.100727.

Ramana KV, Reddy LR. “Modified Hodge test : A useful and the low - cost phenotypic method for detection of carbapenemase producers in Enterobacteriaceae members.” 2013;4:346–349, 2013. https://doi.org/10.4103/0976-9668.117009.

Amjad A, Ia M, Sa A, Farwa U, Malik N, Zia F. Modified Hodge test : A simple and effective test for detection of carbapenemase production The isolates which showed intermediate or susceptible zones for imipenem were tested for carbapenemase Modified Hodge test, as CL recommends the MHT to be perform. Iranian J Microbiol. 2011;3(4):189–93.

Lee K, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83(2):149–52. https://doi.org/10.1016/j.mimet.2010.08.010.

Girlich D, Poirel L, Nordmann P. Value of the modified hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50(2):477–9. https://doi.org/10.1128/JCM.05247-11.

Ibrahim Y, Sani Y, Saleh Q, Saleh A, Hakeem G. Phenotypic Detection of extended spectrum beta lactamase and carbapenemase co-producing clinical isolates from two tertiary hospitals in Kano, North West Nigeria. Ethiop J Health Sci. 2017;27(1):3. https://doi.org/10.4314/ejhs.v27i1.2.

Othman HB, Abdel Halim RM, Abdul-Wahab HEE, Atta HA, Shaaban O. Pseudomonas aeruginosa - Modified Hodge Test (PAE-MHT) and ChromID Carba Agar for Detection of Carbapenemase Producing Pseudomonas Aeruginosa Recovered from Clinical Specimens. Open Access Maced J Med Sci. 2018;6(12):2283–9. https://doi.org/10.3889/oamjms.2018.414.

Endimiani A, Ramette A. “The Evolving Role of the Clinical Microbiology Laboratory in Identifying Resistance in Gram-Negative Bacteria : An Update.” 2020;34:659–676. https://doi.org/10.1016/j.idc.2020.08.001.

Anjum MF, Zankari E, Hasman H. Molecular Methods for Detection of Antimicrobial Resistance. Microbiol Spectr. 2017;5(6):1–17. https://doi.org/10.1128/microbiolspec.arba-0011-2017.

Friedrich SO, Venter A, Kayigire XA, Dawson R, Donald PR, Diacon AH. Suitability of Xpert MTB/RIF and genotype MTBDRplus for patient selection for a tuberculosis clinical trial. J Clin Microbiol. 2011;49(8):2827–31. https://doi.org/10.1128/JCM.00138-11.

Onduru OG, Mkakosya RS, Aboud S, Rumisha SF. “Genetic Determinants of Resistance among ESBL-Producing Enterobacteriaceae in Community and Hospital Settings in East, Central, and Southern Africa: A Systematic Review and Meta-Analysis of Prevalence,” Can J Infect Dis Med Microbiol. 2021;2021. https://doi.org/10.1155/2021/5153237.

El-Kholy AA, Girgis SA, Shetta MAF, Abdel-Hamid DH, Elmanakhly AR. Molecular characterization of multidrug-resistant Gram-negative pathogens in three tertiary hospitals in Cairo, Egypt. Eur J Clin Microbiol Infect Dis. 2020;39(5):987–92. https://doi.org/10.1007/s10096-020-03812-z.

Raufu IA. et al. “Occurrence, antimicrobial resistance and whole genome sequence analysis of Salmonella serovars from pig farms in Ilorin, North-central Nigeria.” Int J Food Microbiol. 2021;350:109245. https://doi.org/10.1016/j.ijfoodmicro.2021.109245.

Resistance D, Mthembu TP, Zishiri OT, El Zowalaty ME. Molecular Detection Of Multidrug-Resistant Salmonella Isolated From Livestock Production Systems In South Africa. 2019. p. 3537–48.

Obadare T, Adejuyigbe E, Adeyemo A, Aboderin O. Characterization of Neonatal Sepsis in a Tertiary Hospital in Nigeria. Int J Infect Dis. 2019;116:S18. https://doi.org/10.1016/j.ijid.2021.12.043.

Drali R, et al. Whole-genome sequencing of Listeria monocytogenes serotype 4b isolated from ready-to-eat lentil salad in Algiers, Algeria. New Microbes New Infect. 2020;33: 100628. https://doi.org/10.1016/j.nmni.2019.100628.

Schwartz T, Kohnen W, Jansen B, Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol. 2003;43(3):325–35. https://doi.org/10.1016/S0168-6496(02)00444-0.

Mahmoud NE, Altayb HN, Gurashi RM. Detection of Carbapenem-Resistant Genes in Escherichia coli Isolated from Drinking Water in Khartoum, Sudan. J Environ Public Health. 2020;2020:2571293. https://doi.org/10.1155/2020/2571293.

Khalil I, et al. Enterotoxigenic Escherichia coli ( ETEC ) vaccines : Priority activities to enable product development, licensure, and global access. Vaccine. 2021;39(31):4266–77. https://doi.org/10.1016/j.vaccine.2021.04.018.

Britton KJ, et al. Lack of effectiveness of 13-valent pneumococcal conjugate vaccination against pneumococcal carriage density in Papua New Guinean infants. Vaccine. 2021;39(38):5401–9. https://doi.org/10.1016/j.vaccine.2021.07.085.

K Fashae, I Engelmann S, Monecke SD, Braun R, Ehricht. Molecular characterisation of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan Nigeria. BMC Vet Res. 2021;17(1)1-12. https://doi.org/10.1186/s12917-020-02734-4

Yusuf I, Ibrahim Y, Sani Y, Saleh Q, Saleh A. Phenotypic Detection of Extended Spectrum Beta lactamase and Carbapenemase Co-producing Clinical Isolates from Two Tertiary Hospitals in Kano, North West Nigeria. Ethiopian J Health Sci. 2017;27(1):3–10.

Fashae K, Engelmann I, Monecke S, Braun SD, Ehricht R. Molecular characterisation of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria. BMC Vet Res. 2021;17(1):33. https://doi.org/10.1186/s12917-020-02734-4.

Barnard M, et al. GenoType MTBDRs/ line probe assay shortens time to diagnosis of extensively drug-resistant tuberculosis in a high-throughput diagnostic laboratory. Am J Respir Crit Care Med. 2012;186(12):1298–305. https://doi.org/10.1164/rccm.201205-0960OC.

Ehlers MM. Evaluation of the GenoType ® MTBDR sl assay for susceptibility testing of second-line anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2012;16(1):104–9.

Bouzouita I. et al. “Performance of the GenoType MTBDRsl V 2.0 for detecting second-line drugs resistance of Mycobacterium tuberculosis isolates in Tunisia.” Res Microbiol. 2021;103816. https://doi.org/10.1016/j.resmic.2021.103816.

Theron G, Peter J, Richardson M, Warren R, Dheda K, S Kr. “MTBDRsl assay for resistance to second-line anti-tuberculosis drugs ( Review ),” Diagnostic Test Accuracy Review. 2016;9. https://doi.org/10.1002/14651858.CD010705.pub3.www.cochranelibrary.com.

Adam MAM, Ali HMH, Khali EAG. mycobacterial strains isolated from Sudan. Pan African Medical Journal. 2019;8688:1–7. https://doi.org/10.11604/pamj.2019.32.124.12762.

Sonda T, et al. “Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in.” 2018. p. 1–12.

Ingle DJ, Levine MM, Kotloff KL, Holt KE, RM. Robins-browne, “Escherichia coli from children in community settings in South Asia and sub-Saharan Africa.” Nat Microbiol. 2018;3. https://doi.org/10.1038/s41564-018-0217-4.

Yamba K, et al. Antimicrobial susceptibility and genomic profiling of Salmonella enterica from bloodstream infections at a tertiary referral hospital in Lusaka. IJID Regions. 2022;3(March):248–55. https://doi.org/10.1016/j.ijregi.2022.04.003.

Bari AK, Geetha S, Shamanna V, Darmavaram S, Govindan V. Comparison of phenotypic and Whole Genome Sequencing (WGS)-derived antimicrobial resistance profiles of Salmonella typhi isolated from Blood cultures. Int J Infect Dis. 2022;116:S17. https://doi.org/10.1016/j.ijid.2021.12.040.

Afolayan AO, et al. Clones and Clusters of Antimicrobial-Resistant Klebsiella From Southwestern Nigeria. Clin Infect Dis. 2021;73(4):1–10.

Feucherolles M, et al. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening : The Case of. Front Microbiol. 2022;12(February):1–16. https://doi.org/10.3389/fmicb.2021.804484.

Feucherolles M, Cauchie H, Penny C. MALDI-TOF Mass Spectrometry and Specific Biomarkers : Potential New Key for Swift Identification of Antimicrobial Resistance in Foodborne Pathogens. Microorganisms. 2019;7:1–16. https://doi.org/10.3390/microorganisms7120593.

Florio W, Baldeschi L, Rizzato C, Tavanti A, Ghelardi E. Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry : An Expanding Area. Front Cell Infect Microbiol. 2020;10(November):1–7. https://doi.org/10.3389/fcimb.2020.572909.

Aworh MK, Ekeng E, Nilsson P, Egyir B, Owusu-Nyantakyi C, Hendriksen RS. Extended-Spectrum ß-Lactamase-Producing Escherichia coli Among Humans, Beef Cattle, and Abattoir Environments in Nigeria. Front Cell Infect Microbiol. 2022;12(April):1–11. https://doi.org/10.3389/fcimb.2022.869314.

Tay MYF, Adzitey F, Sultan SA, Tati JM, Seow KLG, Schlundt J. Whole-Genome Sequencing of Nontyphoidal Salmonella enterica Isolates Obtained from Various Meat Types in Ghana. Microbiol Resour Announc. 2019;8(15):1–4. https://doi.org/10.1128/mra.00033-19.

Wadie B, Abdel-Fattah MA, Yousef A, Mouftah SF, Elhadidy M, Salem TZ. In Silico Characterization of Toxin-Antitoxin Systems in Campylobacter Isolates Recovered from Food Sources and. Genes (Basel). 2021;12:1–16.

Hosu MC, Vasaikar S, Okuthe GE, Apalata T. Molecular Detection of Antibiotic-Resistant Genes in Pseudomonas aeruginosa from Nonclinical Environment : Public Health Implications in Mthatha, Eastern Cape Province, South Africa. Int J Microbiol. 2021;2021:9.