Collective dynamics of the ribosomal tunnel revealed by elastic network modeling

Proteins: Structure, Function and Bioinformatics - Tập 75 Số 4 - Trang 837-845 - 2009
Özge Kürkçüoğlu1, Zeynep Kurkcuoglu1, Pemra Doruker1, Robert L. Jernigan2
1Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
2L.H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa 50011‐3020

Tóm tắt

AbstractThe collective dynamics of the nascent polypeptide exit tunnel are investigated with the computationally efficient elastic network model using normal mode analysis. The calculated normal modes are considered individually and in linear combinations with different coefficients mimicking the phase angles between modes, in order to follow the mechanistic motions of tunnel wall residues. The low frequency fluctuations indicate three distinct regions along the tunnel—the entrance, the neck, and the exit—each having distinctly different domain motions. Generally, the lining of the entrance region moves in the exit direction, with the exit region having significantly larger motions, but in a perpendicular direction, whereas the confined neck region has rotational motions. Especially the universally conserved extensions of ribosomal proteins L4 and L22 located at the narrowest and mechanistically strategic region of tunnel undergo generally anti‐ or non‐correlated motions, which may have an important role in nascent polypeptide gating mechanism. These motions appear to be sufficiently robust so as to be unaffected by the presence of a peptide chain in the tunnel. Proteins 2009. © 2008 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/S1097-2765(01)00293-3

10.1016/j.jmb.2006.05.023

10.1093/nar/28.1.235

10.1126/science.1060089

DeLano WL, 2002, The PyMOL molecular graphics system

10.1038/319693a0

10.1126/science.3576200

10.1126/science.278.5346.2123

10.1046/j.1432-1033.2003.03634.x

10.1038/nsb915

10.1016/S0092-8674(04)00169-2

10.1038/nsmb1021

10.1021/bi050372q

10.1126/science.289.5481.920

10.1016/S0092-8674(02)00649-9

10.1016/S0092-8674(02)00669-4

10.1128/jb.176.20.6192-6198.1994

10.1111/j.1742-4658.2005.04651.x

10.1016/j.neuron.2004.09.011

10.1073/pnas.0508234102

10.1016/S0092-8674(01)00541-4

10.1038/nature04133

10.1038/nature01047

10.1038/nature02899

10.1261/rna.2196403

10.1529/biophysj.104.040162

10.1529/biophysj.104.058495

10.1073/pnas.1632476100

10.1002/bip.20093

10.1016/j.jsb.2004.01.005

10.1529/biophysj.105.064840

10.1146/annurev.biophys.35.040405.101950

10.1016/S0006-3495(01)76033-X

10.1021/bi011393x

10.1038/msb4100075

10.1002/jcc.1160

10.1073/pnas.082148899

10.1016/j.polymer.2003.10.071

10.1038/35018597

10.1093/protein/14.1.1

10.1002/prot.340230410

10.1137/S0895479888151111

10.1126/science.1131127

10.1126/science.1117230

10.1021/ja042260c