Cold-inducible RNA binding protein (CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus

Stephanie van Venrooy1, Dagmar Fichtner1, Martin Kunz1, Doris Wedlich1, Dietmar Gradl1
1Zoologisches Institut II, Universität Karlsruhe (TH), 76131, Karlsruhe, Germany

Tóm tắt

Abstract Background As nuclear mediators of wnt/β-catenin signaling, Lef/Tcf transcription factors play important roles in development and disease. Although it is well established, that the four vertebrate Lef/Tcfs have unique functional properties, most studies unite Lef-1, Tcf-1, Tcf-3 and Tcf-4 and reduce their function to uniformly transduce wnt/β-catenin signaling for activating wnt target genes. In order to discriminate target genes regulated by XTcf-3 from those regulated by XTcf-4 or Lef/Tcfs in general, we performed a subtractive screen, using neuralized Xenopus animal cap explants. Results We identified cold-inducible RNA binding protein (CIRP) as novel XTcf-3 specific target gene. Furthermore, we show that knockdown of XTcf-3 by injection of an antisense morpholino oligonucleotide results in a general broadening of the anterior neural tissue. Depletion of XCIRP by antisense morpholino oligonucleotide injection leads to a reduced stability of mRNA and an enlargement of the anterior neural plate similar to the depletion of XTcf-3. Conclusion Distinct steps in neural development are differentially regulated by individual Lef/Tcfs. For proper development of the anterior brain XTcf-3 and the Tcf-subtype specific target XCIRP appear indispensable. Thus, regulation of anterior neural development, at least in part, depends on mRNA stabilization by the novel XTcf-3 target gene XCIRP.

Từ khóa


Tài liệu tham khảo

Arce L, Yokoyama NN, Waterman ML: Diversity of LEF/TCF action in development and disease. Oncogene. 2006, 25: 7492-7504. 10.1038/sj.onc.1210056.

Hoppler S, Kavanagh CL: Wnt signalling: variety at the core. J Cell Sci. 2007, 120: 385-393. 10.1242/jcs.03363.

Molenaar M, Roose J, Peterson J, Venanzi S, Clevers H, Destree O: Differential expression of the HMG box transcription factors XTcf-3 and XLef-1 during early xenopus development. Mech Dev. 1998, 75: 151-154. 10.1016/S0925-4773(98)00085-9.

Roel G, Broek van den O, Spieker N, Peterson-Maduro J, Destree O: Tcf-1 expression during Xenopus development. Gene Expr Patterns. 2003, 3: 123-126. 10.1016/S1567-133X(03)00039-5.

König A, Gradl D, Kühl M, Wedlich D: The HMG-box transcription factor XTcf-4 demarcates the forebrain-midbrain boundary. Mech Dev. 2000, 93: 211-214. 10.1016/S0925-4773(00)00266-5.

Kunz M, Herrmann M, Wedlich D, Gradl D: Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol. 2004, 273: 390-401. 10.1016/j.ydbio.2004.06.015.

Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R: Wnt3a-/--like phenotype and limb deficiency in Lef-/- Tcf1-/- mice. Genes Dev. 1999, 13: 709-717. 10.1101/gad.13.6.709.

Gregorieff A, Grosschedl R, Clevers H: Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(-/-)/Tcf1(-/-) embryos. EMBO J. 2004, 23: 1825-1833. 10.1038/sj.emboj.7600191.

Standley HJ, Destree O, Kofron M, Wylie C, Heasman J: Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Dev Biol. 2006, 289: 318-328. 10.1016/j.ydbio.2005.10.012.

Liu F, Broek van den O, Destree O, Hoppler S: Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/{beta}-catenin signalling in mesoderm development. Development. 2005, 132: 5375-5385. 10.1242/dev.02152.

Roel G, Hamilton FS, Gent Y, Bain AA, Destree O, Hoppler S: Lef-1 and Tcf-3 transcription factors mediate tissue specific wnt signalling during Xenopus development. Curr Biol. 2002, 12: 1941-1945. 10.1016/S0960-9822(02)01280-0.

Kiecker C, Niehrs C: A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development. 2001, 128: 4189-4201.

Stern CD: Initial patterning of the central nervous system: How many organizers?. Nat Rev Neurosci. 2001, 2: 92-98. 10.1038/35053563.

Baker JC, Beddington RS, Harland RM: Wnt signaling in Xenopus embryos inhibits Bmp4 expression and activates neural development. Genes Dev. 1999, 13: 3149-3159. 10.1101/gad.13.23.3149.

Hikasa H, Sokol SY: The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development. 2004, 131: 4725-4734. 10.1242/dev.01369.

Uochi T, Asashima M: XCIRP (Xenopus homolog of cold-inducible RNA-binding protein) is expressed transiently in developing pronephros and neural tissue. Gene. 1998, 211: 245-250. 10.1016/S0378-1119(98)00102-4.

Munoz-Sanjuan I, Bell E, Altmann CR, Vonica A, Brivanlou AH: Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development. 2002, 129: 5529-5540. 10.1242/dev.00097.

Matsumoto K, Aoki K, Dohmae N, Takio K, Tsujimoto M: CIRP2, a major cytoplasmic RNA-binding protein in Xenopus oocytes. Nucleic Acids Res. 2000, 28: 4689-4697. 10.1093/nar/28.23.4689.

Aoki K, Matsumoto K, Tsujimoto M: Xenopus cold-inducible RNA-binding protein 2 interacts with ElrA, the Xenopus homolog of HuR, and inhibits deadenylation of specific mRNAs. J Biol Chem. 2003, 278: 48491-48497. 10.1074/jbc.M308328200.

Aoki K, Ishii Y, Matsumoto K, Tsujimoto M: Methylation of Xenopus CIRP2 regulates its arginine- and glycine-rich region-mediated nucleocytoplasmic distribution. Nucleic Acids Res. 2002, 30: 5182-5192. 10.1093/nar/gkf638.

Peng Y, Yang PH, Tanner JA, Huang JD, Li M, Lee HF, Xu RH, Kung HF, Lin MC: Cold-inducible RNA binding protein is required for the expression of adhesion molecules and embryonic cell movement in Xenopus laevis. Biochem Biophys Res Commun. 2006, 344: 416-424. 10.1016/j.bbrc.2006.03.086.

Peng Y, Kok KH, Xu RH, Kwok KH, Tay D, Fung PC, Kung HF, Lin MC: Maternal cold inducible RNA binding protein is required for embryonic kidney formation in Xenopus laevis. FEBS Lett. 2000, 482: 37-43. 10.1016/S0014-5793(00)02019-6.

Schambony A, Wedlich D: Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell. 2007, 12: 779-792. 10.1016/j.devcel.2007.02.016.

Heeg-Truesdell E, LaBonne C: Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signalling. Dev Biol. 2006, 298: 71-86. 10.1016/j.ydbio.2006.06.015.

Deblandre GA, Wettstein DA, Koyano-Nakagawa N, Kintner C: A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development. 1999, 126: 4715-4728.

Gestri G, Carl M, Appolloni I, Wilson SW, Barsacchi G, Andreazzoli M: Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development. 2005, 132: 2401-2413. 10.1242/dev.01814.

Pukrop T, Gradl D, Henningfeld KA, Knöchel W, Wedlich D, Kühl M: Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4. J Biol Chem. 2001, 276: 8968-8978. 10.1074/jbc.M007533200.

Gradl D, König A, Wedlich D: Secondary axis formation by LEF/TCF transcription factors depends on the presence of an activating element which is flanked by two repressing motifs. J Biol Chem. 2002, 277: 14159-14171. 10.1074/jbc.M107055200.

Wöhrle S, Wallmen B, Hecht A: Differntial control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by TCFs. Mol Cell Biol. 2007, 27: 8164-8177. 10.1128/MCB.00555-07.

Atcha FA, Syed A, Wu B, Hoverter N, Yokoyama NN, Ting JH, Munguia JE, Mangalam HJ, Marsh JL, Waterman ML: A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol. 2007, 27: 8352-8363. 10.1128/MCB.02132-06.

Hecht A, Stemmler MP: Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem. 2003, 278: 3776-3785. 10.1074/jbc.M210081200.

Blauwkamp TA, Chang MV, Cadingan KM: Novel TCF-binding sites specify transcriptional repression by Wnt signalling. EMBO J. 2008, 27: 1436-1444.

Roose J, Huls G, van Beest M, Moerer P, Horn van der K, Goldschmeding R, Logtenberg T, Clevers H: Synergy between tumor suppressor APC and the β-catenin-Tcf-4 target Tcf1. Science. 1999, 285: 1923-1926. 10.1126/science.285.5435.1923.

Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML: β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet. 2001, 28: 53-57. 10.1038/88264.

Koenig SF, Lattanzio R, Mansperger K, Rupp RAW, Wedlich D, Gradl D: Autoregulation of XTcf-4 depends on a Lef/Tcf site on the XTcf-4 promoter. Genesis. 2008, 46: 81-86. 10.1002/dvg.20363.

Hong CS, Saint-Jeannet JP: The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. Mol Biol Cell. 2007, 18: 2192-2202. 10.1091/mbc.E06-11-1047.

Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA: Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development. 2004, 131: 5871-5881. 10.1242/dev.01516.

Honore SM, Aybar MJ, Mayor R: Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol. 2003, 260: 79-96. 10.1016/S0012-1606(03)00247-1.

Fetka I, Radeghieri A, Bouwmeester T: Expression of the RNA recognition motif-containing protein SEB-4 during Xenopus embryonic development. Mech Dev. 2000, 94: 283-286. 10.1016/S0925-4773(00)00284-7.

Richter K, Grunz H, Dawid IB: Gene expression in the embryonic nervous system of Xenopus laevis. Proc Natl Acad Sci USA. 1988, 85: 8086-8090. 10.1073/pnas.85.21.8086.

Perron M, Furrer MP, Wegnez M, Theodore L: Xenopus elav-like genes are differentially expressed during neurogenesis. Mech Dev. 1999, 84: 139-142. 10.1016/S0925-4773(99)00056-8.

Körner U, Bustin M, Scheer U, Hock R: Developmental role of HMGN proteins in Xenopus laevis. Mech Dev. 2003, 120: 1177-1192. 10.1016/j.mod.2003.07.001.

Kinoshita M, Hatada S, Asashima M, Noda M: HMG-X, a Xenopus gene encoding an HMG1 homolog, is abundantly expressed in the developing nervous system. FEBS Lett. 1994, 352: 191-196. 10.1016/0014-5793(94)00909-0.

David R, Ahrens K, Wedlich D, Schlosser G: Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. Mech Dev. 2001, 103: 189-192. 10.1016/S0925-4773(01)00355-0.

Ghogomu S, van Venrooy S, Ritthaler M, Wedlich D, Gradl D: Hic-5 a novel regulator of Lef/Tcf activity modulates the crosstalk between Wnt-signalling and steroid receptor activity. J Biol Chem. 2006, 281: 1755-1764. 10.1074/jbc.M505869200.

Nieuwkoop PD, Faber J: Normal tables of Xenopus laevis (Daudin). 1967, Elsevier North-Holland Biomedical Press, Amsterdam

Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C: Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 1995, 14: 6268-6279.