Cohomology of semisimple local systems and the decomposition theorem

Selecta Mathematica - Tập 30 - Trang 1-62 - 2023
Chuanhao Wei1, Ruijie Yang2
1Institute for Theoretical Sciences, School of Science, Westlake University and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
2Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

Tóm tắt

In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we construct a generalized Weil operator from the complex conjugate of the cohomology of a semisimple local system to the cohomology of its dual local system, which is functorial with respect to smooth restrictions. This operator allows us to study the Poincaré pairing, usually not positive definite, in terms of a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new proof of Sabbah’s Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, by adapting the method of de Cataldo-Migliorini, without using the category of polarizable twistor $${\mathscr {D}}$$ -modules. This answers a question of Sabbah.

Tài liệu tham khảo

Beĭlinson, A.A., Bernstein, J., Deligne, P., Gabber, O.: Faisceaux pervers. volume 100 (2nd ed.) of Astérisque, pages vi +180. Soc. Math. France, Paris (2018)

Bhatt, B., Lurie, J.: \(p\)-adic Riemann–Hilbert correspondence. To appear

Böckle, G., Khare, C.: Mod \(l\) representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong. Compos. Math. 142(2), 271–294 (2006)

de Cataldo, M.A.A., Migliorini, L.: The Hodge theory of algebraic maps. arXiv preprint arXiv:math/0306030 (2003)

Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math. 35, 259–278 (1968)

Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)

Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)

El Zein, F., ung Tráng, L.D., Ye, X.: Decomposition, purity and fibrations by normal crossing divisors (2018)

Godbillon, C.: Éléments de topologie algébrique. Hermann, Paris (1971)

Kashiwara, M., Schapira, P.: Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1990). With a chapter in French by Christian Houzel

Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(D\)-modules. I. Mem. Amer. Math. Soc., 185(869):xii+324 (2007)

Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(D\)-modules. II. Mem. Amer. Math. Soc., 185(870):xii+565 (2007)

Simpson, C.: Mixed twistor structures. arXiv preprint arXiv:alg-geom/9705006 (1997)

Voisin, C.: Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. Translated from the French original by Leila Schneps (2002)

Yang, R.: Decomposition Theorem for Semisimple Local Systems. Ph.D. thesis, Stony Brook University (2021)