Cohomology of semisimple local systems and the decomposition theorem
Tóm tắt
Tài liệu tham khảo
Beĭlinson, A.A., Bernstein, J., Deligne, P., Gabber, O.: Faisceaux pervers. volume 100 (2nd ed.) of Astérisque, pages vi +180. Soc. Math. France, Paris (2018)
Bhatt, B., Lurie, J.: \(p\)-adic Riemann–Hilbert correspondence. To appear
Böckle, G., Khare, C.: Mod \(l\) representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong. Compos. Math. 142(2), 271–294 (2006)
de Cataldo, M.A.A., Migliorini, L.: The Hodge theory of algebraic maps. arXiv preprint arXiv:math/0306030 (2003)
Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math. 35, 259–278 (1968)
Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)
Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)
El Zein, F., ung Tráng, L.D., Ye, X.: Decomposition, purity and fibrations by normal crossing divisors (2018)
Godbillon, C.: Éléments de topologie algébrique. Hermann, Paris (1971)
Kashiwara, M., Schapira, P.: Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1990). With a chapter in French by Christian Houzel
Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(D\)-modules. I. Mem. Amer. Math. Soc., 185(869):xii+324 (2007)
Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(D\)-modules. II. Mem. Amer. Math. Soc., 185(870):xii+565 (2007)
Voisin, C.: Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. Translated from the French original by Leila Schneps (2002)
Yang, R.: Decomposition Theorem for Semisimple Local Systems. Ph.D. thesis, Stony Brook University (2021)