Cohomology Rings and Algebraic Torus Actions on Hypersurfaces in the Product of Projective Spaces and Bounded Flag Varieties

Arnold Mathematical Journal - Tập 9 - Trang 105-150 - 2022
Grigory Solomadin1
1International Laboratory of Algebraic Topology and its Applications, Faculty of Computer Science, Higher School of Economics, Moscow, Russia

Tóm tắt

In this paper, for any Milnor hypersurface, we find the largest dimension of effective algebraic torus actions on it. The proof of the corresponding theorem is based on the computation of the automorphism group for any Milnor hypersurface. We find all generalized Buchstaber–Ray and Ray hypersurfaces that are toric varieties. We compute the Betti numbers of these hypersurfaces and describe their integral singular cohomology rings in terms of the cohomology of the corresponding ambient varieties.

Tài liệu tham khảo

Arzhantsev, I.V., Bazhov, I.: On orbits of the automorphism group on an affine toric variety. Cent. Eur. J. Math. 11, 1713–1724 (2013) Arzhantsev, I.V., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge University Press, Cambridge (2015) Baird, T.: GKM-sheaves and nonoorientable surface group representations. J. Sympl. Geom. 12, 867–921 (2014) Baumand, W., Browder, P.: The cohomology of quotients of classical groups. Topology 3, 305–336 (1965) Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces. I. Am. J. Math. 80, 458–538 (1958) Buchstaber, V.M., Ray, N.: Toric manifolds and complex cobordisms. Uspekhi Mat. Nauk 53(2), (320), 139–140 (1998) (Russian); English transl., RussianMath. Surveys 53(2) , 371–373, (1998) Buchstaber, V.M., Ray, N.: Flag manifolds and the Landweber-Novikov algebra. Geom. Topol. 2, 79–101 (1998) Buchstaber, V.M., Panov, T.E.: Toric Topology. Mathematical Surveys and Monographs, vol. 204. AMS, Providence, RI (2015) Cheltsov, I.A., Przyjalkowski, V.V., Shramov, C.A.: Fano threefolds with infinite automorphism groups. Izv. Math. 83(4), 226–280 (2019) Danilov, V.I., Khovansky, A.G.: Newton polyhedra and an algorithm for computing Hodge–Deligne numbers. Math. USSR-Izvestiya 29(2), 279–298 (1987) Demazure, M.: Sous-groupes algebriques de rang maximun du groupe de Cremona. Annales scientifiques de l’E.N.S. 3(4), 507–588 (1970) Duan, H., Li, B.: Topology of blow-ups and enumerative geometry (2009). arXiv:0906.4152 [math.AG] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics Wiley, New York (1978) Guillemin, V., Zara, C.: 1-skeleta, Betti numbers, and equivariant cohomology. DukeMath. J. 2, 283–349 (2001) Guillemin, V., Zara, C.: G-actions on graphs. IMRN 10, 519–542 (2001) Gusein-Zade, S.M.: Integration with respect to the Euler characteristic and its applications. Rus. Math. Surv. 65 (2010) Hartschorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) Hirzebruch, F.: Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer, New York (1966) Li, L.: Wonderful compactification of an arrangement of subvarieties. Michigan Math. Soc. 58, 535–563 (2009) Oda, T.: Convex Bodies and Algebraic Geometry. Springer, Berlin (1988) Ramanujam, C.P.: A note on automorphism groups of algebraic varieties. Math. Ann. 156, 25–33 (1964) Ray, N.: On a construction in bordism theory. Proc. Edinburgh Math. Soc. 29, 413–422 (1986) Solomadin, G.D.: Quasitoric stably normally split representatives in unitary cobordism ring. Math. Notes 105(5), 771–791 (2019) Takuma, S.: Extendability of symplectic torus actions with isolated fixed points. RIMS Kokyuroku 1393, 72–78 (2004) Vinberg, E.B., Onischchik, A.L.: Lie Groups and Algebraic Groups. Springer Series in Soviet Union. Springer, Berlin (1990)