Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chuyển Giai Đoạn Rắn Coherent Với Sự Khuếch Tán Nguyên Tử: Một Cách Tiếp Cận Nhiệt Cơ Học
Tóm tắt
Sử dụng khung lý thuyết nhiệt cơ học liên tục hiện đại, chúng tôi phát triển các lý thuyết mặt phân giới sắc nét và mờ cho các chuyển giai đoạn rắn cohere. Các lý thuyết này tính đến sự khuếch tán nguyên tử và sự biến dạng. Một yếu tố quan trọng trong việc xây dựng lý thuyết mặt phân giới sắc nét của chúng tôi là một hệ thống các "lực cấu hình" và một "cân bằng lực cấu hình" đi kèm. Những lực này, khác biệt với các lực Newton tiêu chuẩn, mô tả cấu trúc vật liệu nội tại của một vật thể. Cân bằng cấu hình, khi bị giới hạn ở mặt phân giới, dẫn đến sự tổng quát hóa của mối quan hệ Gibbs–Thomson cổ điển, một sự tổng quát mà tính đến sự phụ thuộc về hướng của mật độ năng lượng bề mặt và cũng cho một phổ rộng về động học chuyển tiếp tiêu hao. Lý thuyết mặt phân giới mờ của chúng tôi liên quan đến các "vi lực" không chuẩn và một "cân bằng vi lực" đi kèm. Những lực này phát sinh tự nhiên từ việc diễn giải mật độ nguyên tử như là các tham số vĩ mô mô tả động lực học nguyên tử khác biệt với chuyển động của các hạt vật liệu. Khi được bổ sung bởi các quan hệ cấu tạo thống nhất về nhiệt động học, cân bằng vi lực mang lại sự tổng quát hóa của mối quan hệ Cahn–Hilliard, cung cấp các tiềm năng hóa học dưới dạng các đạo hàm biến thiên của năng lượng tự do tổng cộng đối với mật độ nguyên tử. Một phân tích tiệm cận hình thức (độ dày của lớp chuyển tiếp tiếp cận 0) chứng minh sự tương ứng giữa các phiên bản lý thuyết của chúng tôi được chuyên biệt cho trường hợp của một loài di động đơn lẻ trong các tình huống mà thang thời gian cho sự lan truyền mặt phân giới là nhỏ so với thang thời gian cho sự khuếch tán khối. Trong khi cân bằng lực cấu hình là thừa trong lý thuyết mặt phân giới mờ, khi tích hợp qua lớp chuyển tiếp, giới hạn của cân bằng này là cân bằng lực cấu hình bề mặt (tức là, mối quan hệ Gibbs–Thomson tổng quát) của lý thuyết mặt phân giới sắc nét.
Từ khóa
#chuyển giai đoạn rắn #khuếch tán nguyên tử #lý thuyết nhiệt cơ học #lực cấu hình #cân bằng lực cấu hìnhTài liệu tham khảo
J. Ågren, Diffusion in phases with several components and sublattices, Journal of the Physics and Chemistry of Solids 43:421–430 (1982).
R. Abeyaratne and J. K. Knowles, On the driving traction acting on a surface of strain discontinuity in a continuum, Journal of the Mechanics and Physics of Solids 38:345–360 (1990).
J. I. D. Alexander and W. C. Johnson, Thermomechanical equilibrium in solid-fluid systems with curved interfaces, Journal of Applied Physics 58:816–824 (1985).
S. S. Antman and J. E. Obsborn, The principal of virtual work and integral laws of motion, Archive for Rational Mechanics and Analysis 69:231–262 (1979).
J. W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, Journal of Cherubical Physics 30:1121–1124 (1959).
J. W. Cahn, On spinodal decomposition, Acta Metallurgica 9:795–801 (1961).
J. W. Cahn, On spinodal decomposition in cubic crystals, Acta Metallurgica 10:179–183 (1962).
J. W. Cahn, Surface stress and the equilibrium of small crystals––I. The case of the isotropic surface, Acta Metallurgica 28:1333–1338 (1980).
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, Journal of Chemical Physics 28:258–267 (1958).
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, Journal of Chemical Physics 31:688–699 (1959).
J. W. Cahn and J. E. Hilliard, Spinodal decomposition: a reprise, Acta Metallurgica 19:151–161 (1971).
J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces––II. Curves and faceted surfaces, Acta Metallurgica 22:1205–1214 (1974).
J. W. Cahn and F. C. Larché, Surface stress and the equilibrium of small crystals––II. Solid particles embedded in a solid matrix, Acta Metallurgica 30:51–56 (1980).
J. W. Cahn and F. C. Larché, An invariant formulation of multicomponent diffusion in crystals, Scripta Metallurgica 17:927–932 (1983).
G. Capriz, Continua with Microstructure (Springer-Verlag, New York, 1989).
G. Capriz and P. Podio-Guidugli, Structured continua from a Lagrangian point of view, Annali di Matematica Pura ed Applicata 135:1–25 (1983).
P. Cermelli and M. E. Gurtin, The dynamics of solid-solid phase transitions 2. Incoherent interfaces, Archive for Rational Mechanics and Analysis 127:41–99 (1994a).
P. Cermelli and M. E. Gurtin, On the kinematics of incoherent phase transitions, Acta Metallurgica et Materialia 42:3349–3359 (1994b).
F. Davì and M. E. Gurtin, On the motion of a phase interface by surface diffusion, Zeitschrift für angewandte Mathematik und Physik 41:782–811 (1990).
J. L. Ericksen, Anisotropic fluids, Archive for Rational Mechanics and Analysis 4:231–237 (1960).
J. L. Ericksen, Conservation laws for liquid crystals, Transactions of the Society of Rheology 5:23–34 (1961).
J. L. Ericksen, Liquid crystals with variable degree of orientation, Archive for Rational Mechanics and Analysis 113:97–120 (1991).
J. D. Eshelby, The force on an elastic singularity, Philosophical Transactions of the Royal Society of London A 244:87–112 (1951).
J. D. Eshelby, The continuum theory of lattice defects, in Progress in Solid State Physics 3, (F. Seitz and D. Turnbull, eds. (Academic Press, 1956), pp. 79–144.
J. D. Eshelby, Energy relations and the energy-momentum tensor in continuum mechanics, in Inelastic Behavior of Solids, M. F. Kanninen, W. F. Alder, A. R. Rosenfield and R. I. Jaffe, eds. (McGraw-Hill, New York, 1970).
J. D. Eshelby, The elastic energy-momentum tensor, Journal of Elasticity 5:321–335 (1975).
I. Fonseca, Variational methods for elastic crystals, Archive for Rational Mechanics and Analysis 107:195–224 (1989).
F. C. Frank, On the kinematic theory of crystal growth and dissolution processes, in Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts and D. Turnbull, eds. (Wiley, New York. 1958).
M. Frémond, Adhérence des solides, Journal de Mécanique théorique et appliquée 6:383–407 (1987).
M. Frémond, Endommagement et principe des puissances virtuelles, Comptes Rendus de l'Académie des Sciences, série II 317:857–863 (1993).
E. Fried, Continua described by a microstructural field, Zeitschrift für angewandte Mathematik und Physik 47:168–175 (1996).
E. Fried, Correspondence between a phase-field theory and a sharp-interface theory for crystal growth, Continuum Mechanics and Thermodynamics 9:33–60 (1997).
E. Fried, Introduction. Fifty years of research on evolving phase interfaces, in Evolving Phase Interfaces in Solids, J. M. Ball, D. Kinderlehrer, P. Podio-Guidugli and M. Slemrod, eds. (Springer-Verlag, Berlin, 1999).
E. Fried and G. Grach, An order-parameter based theory as a regularization of a sharp-interface theory for solid-solid phase transitions, Archive for Rational Mechanics and Analysis 138:355–404 (1997).
E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D 68:326–343.
E. Fried and M. E. Gurtin, Dynamic solid-solid transitions with phase characterized by an order parameter, Physica D 72:287–308 (1994).
E. Fried and M. E. Gurtin, A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy, Physica D 91:143–181 (1996).
E. Fried and S. Vedantam, Phase-field theory for stress-induced diffusional solid-solid phase transitions. (Unpublished manuscript.)
K. Fuchs, Uber die Mischungsschicht zweier Flüssigkeiten, Repertorium der Physik 24:614–647 (1888).
P. Germain, Sur l'application de la méthode des puissances virtuelles en mécanique des milieux continus, Comptes Rendus de l'Académie des Sciences, série A 274:1051–1055 (1973).
M. A. Goodman and S. C. Cowin, A continuum theory for granular materials, Archive for Rational Mechanics and Analysis 44:249–266 (1972).
J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Arts and Sciences 3:108–248. Reprinted in The Scientific Papers of J. Willard Gibbs, Vol. 1 (Dover, New York, 1961).
M. E. Gurtin, On the two-phase Stefan problem with interfacial energy and entropy, Archive for Rational Mechanics and Analysis 96:199–241 (1986).
M. E. Gurtin, Multiphase thermomechanics with interfacial structure 1. Heat conduction and the capillary balance law, Archive for Rational Mechanics and Analysis 104:195–221 (1988).
M. E. Gurtin, On a nonequilibrium thermodynamics of capillarity and phase, Quarterly of Applied Mathematics 47:129–145 (1989).
M. E. Gurtin, On the thermomechanical laws for the motion of a phase interface, Zeitschrift für angewandte Mathematik und Physik 42:370–388 (1991).
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane (Oxford University Press, Oxford, 1993).
M. E. Gurtin, The dynamics of solid-solid phase transitions 1. Coherent interfaces, Archive for Rational Mechanics and Analysis 123:305–335 (1993).
M. E. Gurtin, The characterization of configurational forces, Archive for Rational Mechanics and Analysis 126:387–394 (1994).
M. E. Gurtin, The nature of configurational forces, Archive for Rational Mechanics and Analysis 131:67–100 (1995).
M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D 92:178–192 (1996).
M. E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics (Springer Verlag, Berlin, 1999).
M. E. Gurtin and A. Struthers, Multiphase thermormechanics with interfacial structure 3. Evolving phase boundaries in the presence of bulk deformation, Archive for Rational Mechanics and Analysis 112:97–160 (1990).
M. E. Gurtin and P. W. Voorhees, The continuum mechanics of coherent two-phase elastic solids with mass transport, Proceedings of the Royal Society of London A 440:323–343 (1993).
W. Heidug and F. K. Lehner, Thermodynamics of coherent phase transformations in non-hydrostatically stressed solids, Pure and Applied Geophysics 123:91–98 (1985).
C. Herring, Surface tension as a motivation for sintering, in The Physics of Powder Metallurgy, W. E. Kingston, ed. (McGraw-Hill, New York, 1951).
C. Herring, The use of classical macroscopic concepts in surface-energy problems, in Structure and Properties of Solid Surfaces, R. Gomer and C. S. Smith, eds. (University of Chicago, Chicago, 1953).
D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anistotropic surfaces––I. Fundamentals and applications to plane surface junctions, Surface Science 31, 368–388 (1972).
W. C. Johnson and J. I. D. Alexander, Interface conditions for thermomechanical equilibrium in two-phase crystals, Journal of Applied Physics 59:2735–2746 (1986).
F. C. Larché and J. W. Cahn, A linear theory of thermochemical equilibrium of solids under stress, Acta Metallurgica 21:1051–1063 (1973).
F. C. Larché and J. W. Cahn, A nonlinear theory of thermochemical equilibrium of solids under stress, Acta Metallurgica 26:53–60 (1978a).
F. C. Larché and J. W. Cahn, Thermochemical equilibrium of multiphase solids under stress, Acta Metallurgica 26:1579–1589 (1978b).
F. C. Larché and J. W. Cahn, The effect of self-stress on diffusion in solids, Acta Metallurgica 30:1835–1845 (1982).
F. C. Larché and J. W. Cahn, The interactions of composition and stress in crystalline solids, Acta Metallurgica 33:331–357 (1983).
F. C. Larché and J. W. Cahn, Phase changes in a thin plate with non-local self-stress effects, Acta Metallurgica 40:947–955 (1992).
P. Leo, J. S. Lowengrub, and H. J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Materiala 47:2113–2130 (1998).
P. Leo and R. F. Sekerka, The effect of surface stress on crystal-melt and crystal-crystal equilibrium, Acta Metallurgica 37:3119–3138 (1989).
F. M. Leslie, Some constitutive equations for liquid crystals, Archive for Rational Mechanics and Analysis 28:265–283 (1968).
G. A. Maugin, Material Inhomogeneities in Elasticity (Chapman and Hall, London, 1993).
T. Miyazaki, T. Kozakai, and S. Mizuno, A theoretical analysis of the phase-decompositions based upon the two-dimensional non-linear diffusion equaiton, Transactions of the Japan Institute of Metals 24:799–808 (1983).
W. W. Mullins, Two-dimensional motion of idealized grain boundaries, Journal of Applied Physics 27:900–904 (1956).
W. W. Mullins, Grain boundary grooving by surface diffusion, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 218:354–361 (1960).
W. W. Mullins, The thermodynamics of critical phases with curved interfaces: specific case of interfacial isotropy and hydrostatic Pressure, in Proceedings of an International Conference on Solid → Solid Phase Transformations, H. I. Aaronson, D. E. Laughlin, R. F. Sekerka, and C. M. Wayman, eds. (American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1982).
W. W. Mullins, Thermodynamic equilibrium of a crystalline sphere in a fluid, Journal of Chemical Physics 81:1436–1442 (1984).
W. W. Mullins and R. F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, Journal of Applied Physics 34:323–329 (1963).
W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a binary alloy, Journal of Applied Physics 35:444–451 (1964).
W. W. Mullins and R. F. Sekerka, On the thermodynamics of crystalline solids, Journal of Chemical Physics 82:5192–5202 (1985).
H. Nishimori and A. Onuki, Pattern formation in phase-separating alloys with cubic symmetry, Physical Review B 42:980–983 (1990).
H. Nishimori and A. Onuki, Freezing of domain growth in cubic solids with elastic misfit, Journal of the Physical Society of Japan 60:1208–1211 (1991).
A. Onuki, Ginzburg–Landau approach to elastic effects in the phase separation of solids, Journal of the Physical Society of Japan 58:3065–3068 (1989a).
A. Onuki, Long-range interactions through elastic fields in phase-separating solids, Journal of the Physical Society of Japan 58:3069–3072 (1989b).
C. W. Oseen, The theory of liquid crystals, Transactions of the Faraday Society 29:883–899 (1933).
R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proceedings of the Royal Society of London A 422:261–278 (1989).
Lord Rayleigh, On the theory of Surface forces––II. Compressible fluids, Philosophical Magazine 33:209–220 (1892).
J. S. Rowlison, Van der Waals and the physics of liquids, in J. D. van der Waals: On the Continuity of the Gaseous and Liquid States, J. S. Rowlison, ed. (North-Holland, Amsterdam, 1988).
C. H. Su and P. W. Voorhees, The dynamics of precipitate evolution in elastically stressed solids––I. Inverse coarsening, Acta Metallurgica et Materiala 44:1987–1999 (1996a).
C. H. Su and P. W. Voorhees, The dynamics of precipitate evolution in elastically stressed solids––II. Particle alignment, Acta Metallurgica et Materiala 44:2001–2016 (1996b).
M. E. Thompson, C. S. Su, and P. W. Voorhees, The equilibrium shape of a misfitting precipitate, Acta Metallurgica et Materiala 42:2107–2122 (1994).
M. E. Thompson and P. W. Voorhees, Equilibrium particle morphologies in elastically stressed solids, in Mathematics of Microstructure Evolution, L. Q. Chen, B. Fultz, J. W. Cahn, J. R. Manning, J. E. Morral, and J. Simmons, eds. (SIAM, Philadelphia, 1996).
C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, in (Handbuch der Physik III–3, S. Flügge, ed.) (Springer-Verlag, Berlin, 1965).
C. Truesdell and R. A. Toupin, The Classical Field Theories, in (Handbuch der Physik III–1, S. Flügge, ed.) (Springer-Verlag, Berlin, 1960).
L. M. Truskinovsky, Dynamics of nonequilibrium phase boundaries in a heat conducting nonlinearly elastic medium, Journal of Applied Mathematics and Mechanics (PMM) 51:777–784 (1987).
L. M. Truskinovsky, Kinks versus shocks, in Shock Induced Transitions and Phase Structures in General Media, J. E. Dunn, R. L. Fosdick, and M. Slemrod, eds. (Springer-Verlag, Berlin, 1993).
J. D. van der Waals, Thermodynamische Theorie de Capillariteit in de Onderstelling van Continue Dichteidsverandering, Verhandelingen der Koninklijke Akademie van Wetenschappen, Afdeeling Natuurkunde, Deel 1, 1893. See also J. S. Rowlison, Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, ” Journal of Statistical Physics 20:197–244 (1979).
Y. Wang, L. Q. Chen, and A. G. Khachaturyan, Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap, Acta Metallurgica et Materiala 41:279–296 (1993).
Y. Wang and A. G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Metallurgica et Materiala 43:1837–1857 (1995).