Coexistence of recurrent chromosomal abnormalities and the Philadelphia chromosome in acute and chronic myeloid leukemias: report of five cases and review of literature

Molecular Cytogenetics - Tập 13 Số 1 - 2020
Jiyong Gong1, Zhenghao Zhang2, Wei Zhang1, Huijun Wang1, Xiaoran Feng1, Jianli Zhou1, Guoqing Zhu1
1State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
2Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People’s Republic of China

Tóm tắt

AbstractProgression of chronic myelogenous leukemia (CML) is frequently accompanied by cytogenetic evolution. Additional genetic abnormalities are seen in 10–20% of CML cases at the time of diagnosis, and in 60–80% of cases of advanced disease. Unbalanced chromosomal changes such as an extra copy of the Philadelphia chromosome (Ph), trisomy 8, and i(17)(q10) are common. Balanced chromosomal translocations, such as t(3;3), t(8;21), t(15;17), and inv(16) are typically found in acute myeloid leukemia, but rarely occur in CML. Translocations involving 11q23, t(8;21), and inv(16) are relatively common genetic abnormalities in acute leukemia, but are extremely rare in CML. In the literature to date, there are at least 76 Ph+ cases with t(3;21), 47 Ph+ cases with inv(16), 16 Ph+ cases with t(8;21), and 9 Ph+ cases with t(9;11). But most of what has been published is now over 30 years old, without the benefit of modern immunophenotyping to confirm diagnosis, and before the introduction of treatment regimes such as TKI. In this study, we explored the rare concomitant occurrence of coexistence current chromosomal translocation and t(9;22) in CML or acute myeloid leukemia (AML).

Từ khóa


Tài liệu tham khảo

Zaccaria A, Testoni N, Valenti AM, Luatti S, Tonelli M, Marzocchi G, et al. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications. Cancer Genet Cytogenet. 2010;199:76–80. https://doi.org/10.1016/j.cancergencyto.2010.02.003.

Cortes J, O’Dwyer ME. Clonal evolution in chronic myelogenous leukemia. Hematol Oncol Clin North Am. 2004;18:671–84.

Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002;107:76–94. https://doi.org/10.1159/000046636.

Mu Q, Ma Q, Wang Y, Chen Z, Tong X, Chen FF, et al. Cytogenetic profile of 1,863 Ph/BCR-ABL-positive chronic myelogenous leukemia patients from the Chinese population. Ann Hematol. 2012;91:1065–72. https://doi.org/10.1007/s00277-012-1421-6.

Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against Cancer program. Leukemia. 2003;17:2318–57. https://doi.org/10.1038/sj.leu.2403135.

Heesch S, Neumann M, Schwartz S, Bartram I, Schlee C, Burmeister T, et al. Acute leukemias of ambiguous lineage in adults: molecular and clinical characterization. Ann Hematol. 2013;92:747–58. https://doi.org/10.1007/s00277-013-1694-4.

van den Ancker W, Westers TM, de Leeuw DC, van der Veeken YFCM, Loonen A, van Beckhoven E, et al. A threshold of 10% for myeloperoxidase by flow cytometry is valid to classify acute leukemia of ambiguous and myeloid origin. Cytometry B Clin Cytom. 2013;84:114–8. https://doi.org/10.1002/cyto.b.21072.

Haferlach C, Bacher U, Schnittger S, Weiss T, Kern W, Haferlach T. Similar patterns of chromosome abnormalities in CML occur in addition to the Philadelphia chromosome with or without tyrosine kinase inhibitor treatment. Leukemia. 2010;24:638–40. https://doi.org/10.1038/leu.2009.222.

Fabarius A, Leitner A, Hochhaus A, Müller MC, Hanfstein B, Haferlach C, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML study IV. Blood. 2011;118:6760–8. https://doi.org/10.1182/blood-2011-08-373902.

Liu XP, Zhang MR, Dai Y, Zhang L, Li R, Hao Y, et al. Study of genes involved in chronic myeloid leukemia with t(3;21)(q26;q22) in blastic crisis. Zhonghua Xue Ye Xue Za Zhi. 2006;27:310–3.

Wang W, Tang G, Cortes JE, Liu H, Ai D, Yin CC, et al. Chromosomal rearrangement involving 11q23 locus in chronic myelogenous leukemia: a rare phenomenon frequently associated with disease progression and poor prognosis. J Hematol Oncol. 2015;8:32. https://doi.org/10.1186/s13045-015-0128-2.

Suzuki K, Sugawara T, Kowata S, Utsugizawa T, Ito S, Murai K, et al. Uncommon karyotypic abnormality, t(11;19)(q23;p13.3), in a patient with blastic phase of chronic myeloid leukemia. Cancer Genet Cytogenet. 2004;150:159–63. https://doi.org/10.1016/j.cancergencyto.2003.09.005.

Lee J, Kim DS, Lee HS, Choi SI, Cho YG. A novel t(9;22;11) translocation involving 11q24 in a patient with chronic myeloid leukemia: a case report. Oncol Lett. 2017;13:1711–3. https://doi.org/10.3892/ol.2017.6875.

Gutiérrez LG, Noriega MF, Laudicina A, Quatrin M, Bengió RM, Larripa I. An unusual translocation, t(1;11)(q21;q23), in a case of chronic myeloid leukemia with a cryptic Philadelphia chromosome. Oncol Lett. 2017;13:3159–62. https://doi.org/10.3892/ol.2017.5845.

Zhang Y, Liu Y, Liu X, An L, Huang B, Li J, et al. Co-existence of t(9;22) and t(8;21) in primary blast phase of chronic myelogenous leukemia: clinical experience and literature review. Int J Clin Exp Pathol. 2019;12:1811–5.

Yin CC, Medeiros LJ, Glassman AB, Lin P. T(8;21)(q22;q22) in blast phase of chronic myelogenous leukemia. Am J Clin Pathol. 2004;121:836–42. https://doi.org/10.1309/h8jh6l094b9u3hgt.

Ferro MT, Steegman JL, Escribano L, Heiurichs B, Parada L, García-Sagredo JM, et al. Ph-positive chronic myeloid leukemia with t(8;21)(q22;q22) in blastic crisis. Cancer Genet Cytogenet. 1992;58:96–9. https://doi.org/10.1016/0165-4608(92)90143-v.

Najfeld V, Wisch N, Mascarenhas J, Issa L, Tripodi J, Sidhu M, et al. Development of t(8;21) and RUNX1-RUNX1T1 in the Philadelphia-positive clone of a patient with chronic myelogenous leukemia: additional evidence for multiple steps involved in disease progression. Cancer Genet. 2011;204:165–70. https://doi.org/10.1016/j.cancergencyto.2010.09.001.

Gong J, Li J, Gai Y, Tian X, Feng X, Lin Y, et al. Co-occurrence of t(8;21)(q22;q22) and t(9;22)(q34;q11) in a case with chronic myelogenous leukemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:253–6. https://doi.org/10.3760/cma.j.issn.1003-9406.2019.03.015.

Soderholm J, Kobayashi H, Mathieu C, Rowley JD, Nucifora G. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia. 1997;11:352–8. https://doi.org/10.1038/sj.leu.2400584.

Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 1994;13:504–10. https://doi.org/10.1002/j.1460-2075.1994.tb06288.x.

Rogers HJ, Vardiman JW, Anastasi J, Raca G, Savage NM, Cherry AM, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99:821–9. https://doi.org/10.3324/haematol.2013.096420.

Park SH, Chi HS, Cho YU, Jang S, Park CJ. Evaluation of prognostic factors in patients with therapy-related acute myeloid leukemia. Blood Res. 2013;48:185–92. https://doi.org/10.5045/br.2013.48.3.185.

Cuenco GM, Ren R. Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene. 2004;23:569–79. https://doi.org/10.1038/sj.onc.1207143.

Monma F, Nishii K, Shiga J, Sugahara H, Lorenzo FV, Watanabe Y, et al. Detection of the CBFB/MYH11 fusion gene in de novo acute myeloid leukemia (AML): a single-institution study of 224 Japanese AML patients. Leuk Res. 2007;31:471–6. https://doi.org/10.1016/j.leukres.2006.08.009.

Moreno-Miralles I, Pan L, Keates-Baleeiro J, Durst-Goodwin K, Yang C, Kim HG, et al. The inv(16) cooperates with ARF haploinsufficiency to induce acute myeloid leukemia. J Biol Chem. 2005;280:40097–103. https://doi.org/10.1074/jbc.M506855200.

Bustamante D, Chan KR, Czuchlewski DR, Saadi AA. Patterns of BCR breakpoints in patients with coexisting inv(16)(p13.1q22) and t(9;22)(q34;q11.2). Int J Hematol. 2012;95:324–6. https://doi.org/10.1007/s12185-011-0990-9.

Roth CG, Contis L, Gupta S, Agha M, Safyan E. De novo acute myeloid leukemia with Philadelphia chromosome (BCR-ABL) and inversion 16 (CBFB-MYH11): report of two cases and review of the literature. Leuk Lymphoma. 2011;52:531–5. https://doi.org/10.3109/10428194.2010.538941.

Tirado CA, Valdez F, Klesse L, Karandikar NJ, Uddin N, Arbini A, et al. Acute myeloid leukemia with inv(16) with CBFB-MYH11, 3'CBFB deletion, variant t(9;22) with BCR-ABL1, and del(7)(q22q32) in a pediatric patient: case report and literature review. Cancer Genet Cytogenet. 2010;200:54–9. https://doi.org/10.1016/j.cancergencyto.2010.03.001.

Han E, Lee H, Kim M, Kim Y, Han K, Lee SE, et al. Characteristics of hematologic malignancies with coexisting t(9;22) and inv(16) chromosomal abnormalities. Blood Res. 2014;49:22–8. https://doi.org/10.5045/br.2014.49.1.22.

Merzianu M, Medeiros LJ, Cortes J, Yin C, Lin P, Jones D, et al. Inv(16)(p13q22) in chronic myelogenous leukemia in blast phase: a clinicopathologic, cytogenetic, and molecular study of five cases. Am J Clin Pathol. 2005;124:807–14. https://doi.org/10.1309/3HFE-16DK-MB1D-BFMN.

Wu Y, Slovak ML, Snyder DS, Arber DA. Coexistence of inversion 16 and the Philadelphia chromosome in acute and chronic myeloid leukemias: report of six cases and review of literature. Am J Clin Pathol. 2006;125:260–6. https://doi.org/10.1309/f0mx5cl8cedy3w86.