Cocrystallization of gliclazide with improved physicochemical properties

Future Journal of Pharmaceutical Sciences - Tập 7 - Trang 1-13 - 2021
Jaswanth S. Bhandaru1, Shivarani Eesam2, Raghuram Rao Akkinepally2, Ravi Kumar Bobbala2
1Piramal Pharma Limited, Zaheerabad, India
2Department of Medicinal Chemistry, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India

Tóm tắt

Cocrystallization is one of the crystal engineering strategies used to alter the physicochemical properties of drugs that are poorly water-soluble. Gliclazide (GLZ), an antidiabetic drug, belongs to Biopharmaceutical Classification System class-II (low solubility and high permeability) and has low bioavailability, resulting in poor therapeutic effects in patients. Therefore, to impart better solubility and bioavailability of GLZ, the study was carried out by preparing GLZ cocrystals using liquid-assisted grinding method with three coformers [3,5-dinitrosalicylic acid (DNS), 2,6-pyridine dicarboxylic acid (PDA), and L-proline (LPN)], and these were characterized using Differential Scanning Colorimetry (DSC), Powder X-ray diffraction (PXRD), Fourier Transform Infra-red spectroscopy (FTIR), and Raman spectral studies. Further, Scanning electron microscopy (SEM) analysis, accelerated stability, solubility, in vitro dissolution studies, and in vivo pharmacokinetic studies were performed in male Wistar rats. DSC and PXRD analysis confirmed the formation of the GLZ cocrystals. Hydrogen bonding between pure GLZ and its coformers was demonstrated based on FTIR and Raman analysis. SEM data showed morphological images for GLZ cocrystals differed from those of pure GLZ. In comparison with pure GLZ, these GLZ cocrystals have greatly improved solubility, in vitro dissolution, and in vivo profiles. Among the three, GLZ–DNS cocrystals outperformed the pure drug in terms of solubility (6.3 times), degradation (1.5 times), and relative bioavailability (1.8 times). Hence, cocrystallization of GLZ leads to improved physicochemical properties of poorly soluble drug gliclazide.

Tài liệu tham khảo

Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032 Good DJ, Rodriguez-Hornedo N (2009) Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des 9(5):2252–2264. https://doi.org/10.1021/cg801039j Serajuddin ATM (2007) Salt formation to improve drug solubility. Adv Drug Deliv Rev 59(7):603–616. https://doi.org/10.1016/j.addr.2007.05.010 Torchillin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16 Zahra ZA, Sahar ZA (2019) Preparation and characterization of curcumin niosomal nanoparticles via a simple and eco-friendly route. J Nanostruct 9:784–790 Nader TQ, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 22:63–69 Sahar ZA, Nader TQ (2014) Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J Nanostruct 4:267–275 Sahar ZA, Nader TQ (2015) Effect of some synthetic parameters on size and polydispersity index of gelatin nanoparticles cross-linked by CDI/NHS system. J Nanostruct 5:137–144 Mullauer FB, Van BL, Daalhuisen JB, Ten BMS, Storm G, Medema JP, Schiffelers RM, Kessler JH (2011) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-Cancer Drugs 22(3):223–233. https://doi.org/10.1097/CAD.0b013e3283421035 Hu L, Jia Y, Niu F, Zheng J, Yang X, Jiao K (2012) Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem 60(29):7137–7141. https://doi.org/10.1021/jf204078t Dehelean CA, Feflea S, Gheorgheosu D, Ganta S, Cimpean AM, Muntean D, Amiji MM (2013) Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in BALB/c mice. J Biomed Nanotechnol 9(4):577–589. https://doi.org/10.1166/jbn.2013.1563 Tan JM, Govindarajan K, Arulselvan P, Fakurazi S, Hussein MZ (2014) Sustained release and cytotoxicity evaluation of carbon nanotube-mediated drug delivery system for betulinic acid. J Nanomater 2014:1–11. https://doi.org/10.1155/2014/862148 Frijlink HW, Eissens AC, Hefting NR, Poelstra K, Lerk CF, Meijer DKF (1991) The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm Res 8(1):9–16. https://doi.org/10.1023/A:1015861719134 Singh S, Baghel R, Yadav L (2011) A review on solid dispersion. Int J Pharm Life Sci 2:1078–1095 Devarajan PV, Sonavane GS (2007) Preparation and in vitro/in vivo evaluation of gliclazide loaded Eudragit nanoparticles as sustained release carriers. Drug Dev Ind Pharm 33(2):101–111. https://doi.org/10.1080/03639040601096695 Patel H, Pandey N, Patel B, Ranch K, Bodiwala K, Vyas B (2020) Enhancement of in vivo hypoglycemic effect of gliclazide by developing self-microemulsifying pellet dosage form. Future J Pharm Sci 6(1):17. https://doi.org/10.1186/s43094-020-00034-0 Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhary AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N, Ghogale PP, Gosh S, Goswami PK, Goud NR, Jetti RKR, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson AS, Puri V, Ramanan A, Rajamannar T, Reddy CM, Hornedo RN, Rogers RD, Row TNG, Sanphui P, Shan N, Shete G, Singh A, Sun CC, Swift JA, Thaimattam R, Thakur TS, Thaper RK, Thomas SP, Tothadi S, Vangala VR, Narayan V, Peddy V, Weyna D, Zawortko MJ (2012) Polymorphs, salts, and cocrystals: what’s in name? Cryst Growth Des 12(5):2147–2152. https://doi.org/10.1021/cg3002948 Srivastava D, Fatima Z, Kaur CD (2018) Multicomponent pharmaceutical cocrystals: a novel approach for combination therapy. Mini-Rev Med Chem 18(14):1160–1167. https://doi.org/10.2174/1389557518666180305163613 Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ (2006) Pharmaceutical co-crystals. J Pharm Sci 95(3):499–516. https://doi.org/10.1002/jps.20578 Thipparaboina R, Kumar D, Chavan RB, Shastri NR (2016) Multi drug cocrystals: towards the development of effective therapeutic hybrids. Drug Discov Today 21(3):481–490. https://doi.org/10.1016/j.drudis.2016.02.001 Moulton B, Zaworotko MJ (2011) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658 Imamura M, Nakanishi K, Shiraki R, Onda K, Sasuga D, Yuda M (2012) Cocrystal of C-glycoside derivative and L-proline. US patent 8, 097, 592 B2 (17 January 2012). Thipparaboina R, Kumar D, Chavan RB, Shastri NR (2016) Multi drug co-crytals: towards the development of effective therapeutic hybrids. Drug Discov Today 21(3):481–490. https://doi.org/10.1016/j.drudis.2016.02.001 Harrison WT, Yathirajan HS, Bindya S, Anilkumar HG, Devaraju (2007) Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Crystallogr C 63(Pt 2):12931 Mascitti V, Thuma BA, Smith AC, Robinson RP, Brandt T, Kalgutkar AS, Maurer TS, Samas B, Sharma R (2013) On the importance of synthetic organic chemistry in drug discovery: reflections on the discovery of antidiabetic agent ertugliflozin. Med Chem Commun 4(1):101–111. https://doi.org/10.1039/C2MD20163A Chavan RB, Thipparaboina R, Yadav B, Shastri NR (2018) Continuous manufacturing of co-crystals: challenges and prospects. Drug Deliv Transl Res 19:1–4 Bhandaru JS, Malothu N, Akkinepally RR (2015) Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate cocrystals. Cryst Growth Des 15(3):1173–1179. https://doi.org/10.1021/cg501532k Eesam S, Bhandaru JS, Naliganti C, Bobbala RK, Akkinepally RR (2020) Solubility enhancement of carvedilol using drug–drug cocrystallization with hydrochlorothiazide. Futur J Pharm Sci 6(1):77. https://doi.org/10.1186/s43094-020-00083-5 Google Search on “glyclazide cocrystals”. 11, 300 citations on 04/12/2020. Bruni G, Berbenni V, Maggi L, Mustarelli P, Friuli V, Ferrara C, Pardi F, Castagna F, Girella A, Milanese C, Marini A (2017) Multicomponent crystals of gliclazide and tromethamine: preparation, physico-chemical, and pharmaceutical characterization. Drug Dev Ind Pharm 44:243–250 Chadha R, Dimpy R, Goyal P (2016) Novel cocrystals of gliclazide: characterization and evaluation. CrystEngComm 18(13):2275–2283. https://doi.org/10.1039/C5CE02402A Chadha R, Dimpy R, Goyal P (2017) Supramolecular cocrystals of gliclazide: synthesis, characterization and evaluation. Pharm Res 34(3):552–563. https://doi.org/10.1007/s11095-016-2075-1 Ibrahim AY, El-Malah Y, Abourehab MAS (2019) Solubility enhancement of gliclazide via co-crystallization with malonic acid. Life Sci J 16:49–53 Samie A, Desiraju GR, Banik M (2017) Salts and cocrystals of the antidiabetic drugs gliclazide, tolbutamide, and glipizide: solubility enhancements through drug–coformer interactions. Cryst Growth Des 17(5):2406–2417. https://doi.org/10.1021/acs.cgd.6b01804 Putra OD, Furuishi T, Yonemochi E, Terada K, Uekusa H (2016) Drug–drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs. Cryst Growth Des 16(7):3577–3581. https://doi.org/10.1021/acs.cgd.6b00639 Marwah A, Pól MF, Patrick M, Andrea E (2019) Investigation of the formation of drug-drug cocrystals and coamorphous systems of the antidiabetic drug gliclazide. Int J Pharm 561:35–42 Maggi L, Canobbio A, Bruni G, Musitelli G, Conte U (2015) Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions. J Drug Deliv Sci Technol 26:17–23. https://doi.org/10.1016/j.jddst.2015.01.002 Newman AW, Byrn SR (2003) Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today 8(19):898–905. https://doi.org/10.1016/S1359-6446(03)02832-0 Naqvi A, Ahmad M, Minhas MU, Khan KU, Batool F, Rizwan A (2020) Preparation and evaluation of pharmaceutical co-crystals for solubility enhancement of atorvastatin calcium. Polym Bull 77(12):6191–6211. https://doi.org/10.1007/s00289-019-02997-4 Bhalla Y, Chadha K, Chadha R, Karan M (2019) Daidzein cocrystals: an opportunity to improve its biopharmaceutical parameters. Heliyon 5(11):e02669. https://doi.org/10.1016/j.heliyon.2019.e02669 ICH Guideline Q1A(R) (2000) Stability testing of new drugs and products. ICH, Geneva www.eudra.org/emea.html Glomme A, Marz J, Dressman JB (2005) Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J Pharm Sci 94(1):1–16. https://doi.org/10.1002/jps.20212 Gadade DD, Kulkarni DA, Rathi PB, Pekamwar SS, Joshi SS (2017) Solubility enhancement of lornoxicam by crystal engineering. Indian J Pharm Sci 79:277–286