Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production

Springer Science and Business Media LLC - Tập 57 - Trang 2897-2911 - 2017
Dhirendra Pratap Singh1,2,3, Shashank Singh1, Vandana Bijalwan1, Vijay Kumar1, Pragyanshu Khare1, Ritesh Kumar Baboota1,4, Paramdeep Singh1, Ravneet Kaur Boparai5, Jagdeep Singh1, Kanthi Kiran Kondepudi1, Kanwaljit Chopra2, Mahendra Bishnoi1,6
1Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
2Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
3Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
4Department of Pharmaceutical and Pharmacological Science, Katholieke Universiteit Leuven, Leuven, Belgium
5Department of Biotechnology, Government College for Girls, Chandigarh, India
6Functional Foods Research Laboratory, University of Southern Queensland, Toowoomba, Australia

Tóm tắt

Cranberries are a rich source of polyphenolic antioxidants. Purified sugars or artificial sweeteners are being added to cranberry-based food products to mask tartness. Refined sugar and artificial sweeteners intake modulate gut microbiota and result in metabolic complications. We evaluated effects of isomalto-oligosaccharides (IMOs; sweet tasting non-digestible oligosaccharides) with cranberry extract (CRX) on high fat diet (HFD)-induced metabolic alterations in mice. Male Swiss albino mice were fed normal chow or HFD (58% fat kcal), and were administered either CRX (200 mg/kg) alone or in combination with IMOs (1 g/kg). Cecal short-chain fatty acids, abundances of selected (1) butyrate producing, (2) metabolically beneficial, and (3) selective lipopolysaccharides producing gram negative gut bacteria were studied. Further, gut-related histological, biochemical, genomic changes along with circulating pro-/anti-inflammatory markers and systemic obesity-associated metabolic changes were studied. Co-supplementation of CRX and IMOs significantly improved cecal SCFAs, especially butyrate levels, selected butyrate-producing bacteria (clostridial cluster XIVa bacteria) and butyrate kinase expression in HFD-fed mice. The combination also significantly improved gut beneficial bacterial abundance, gut histology and related changes (colon mucin production, gut permeability) as compared to individual agents. It also prevented HFD-induced systemic and tissue inflammation, glucose intolerance and systemic obesity-associated metabolic changes in adipose tissue and liver. The combination of CRX and IMOs appeared more effective in the prevention of HFD-induced gut derangements. Combination of CRX and IMOs could be advantageous for normalization of metabolic alterations seen in diet-induced obesity via beneficial modulation of gastrointestinal health.

Tài liệu tham khảo

Blumberg JB, Camesano TA, Cassidy A, Kris-Etherton P, Howell A, Manach C, Ostertag LM, Sies H, Skulas-Ray A, Vita JA (2013) Cranberries and their bioactive constituents in human health. Adv Nutr 4(6):618–632 Côté J, Caillet S, Doyon G, Sylvain J-F, Lacroix M (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50(7):666–679 Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51(6):652–664 Deziel BA, Patel K, Neto C, Gottschall-Pass K, Hurta RA (2010) Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J Cellular Biochem 111(3):742–754 Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 52(Suppl 1):S18–27 Deziel B, MacPhee J, Patel K, Catalli A, Kulka M, Neto C, Gottschall-Pass K, Hurta R (2012) American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators. Food Funct 3(5):556–564 Beverly K, Basu A, Lucas EA (2008) Anti-inflammatory effects of cranberry juice in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. FASEB J 22 (1 Supplement):890.898–890.898 Kim MJ, Ohn J, Kim JH, Kwak H-K (2011) Effects of freeze-dried cranberry powder on serum lipids and inflammatory markers in lipopolysaccharide treated rats fed an atherogenic diet. Nutr Res Pract 5(5):404–411 Jepson RG, Craig JC (2008) Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev 23(1):CD001321. doi:10.1002/14651858.CD001321.pub4 Uberos J, Iswaldi I, Belmonte RR, Segura-Carretero A, Fernández-Puentes V, Molina-Carballo A, Muñoz-Hoyos A (2011) Cranberry (Vaccinium macrocarpon) changes the surface hydrophobicity and biofilm formation of E. coli. Microbiol Insights 4:21 Burger O, Weiss E, Sharon N, Tabak M, Neeman I, Ofek I (2002) Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of Cranberry juice. Crit Rev Food Sci Nutr 42(sup3):279–284 Basu A, Lyons TJ (2012) Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem 60(23):5687–5692 Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Roenneburg DA, Krueger CG, Reed JD, Kudsk KA (2013) Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. J Parenter Enteral Nutr 37(3):401–409 Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2014) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 30(307142):2014–307142 Singh DP, Singh J, Boparai RK, Zhu J, Mantri S, Khare P, Khardori R, Kondepudi KK, Chopra K, Bishnoi M (2017) Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacol Res 123:103–113 Singh DP, Khare P, Zhu J, Kondepudi KK, Singh J, Baboota RK, Boparai RK, Khardori R, Chopra K, Bishnoi M (2016) A novel cobiotic-based preventive approach against high-fat diet-induced adiposity, nonalcoholic fatty liver and gut derangement in mice. Int J Obes 40(3):487–496 Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320 Singh DP, Khare P, Bijalwan V, Baboota RK, Singh J, Kondepudi KK, Chopra K, Bishnoi M (2017) Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. BioFactors. doi:10.1002/biof.1381 Liu XC, Mei Q, Xu JM, Hu J (2009) Balsalazine decreases intestinal mucosal permeability of dextran sulfate sodium-induced colitis in mice. Acta Pharmacol Sin 30(7):987–993 Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323 Lee B-H, Lo Y-H, Pan T-M (2013) Anti-obesity activity of Lactobacillus fermented soy milk products. J Funct Foods 5(2):905–913 Griffiths EA, Duffy LC, Schanbacher FL, Qiao H, Dryja D, Leavens A, Rossman J, Rich G, Dirienzo D, Ogra PL (2004) In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci 49(4):579–589 Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481 Yadav H, Lee JH, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288(35):25088–25097 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408 Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12):2191–2192 Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509 Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115(3):695–702 Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384 Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249 Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15(5):474–479 Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66(4):1654–1661 Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 7:979. doi:10.3389/fmicb.2016.00979) Cotta M, Forster R (2006) The Family Lachnospiraceae, Including the Genera Butyrivibrio, Lachnospira and Roseburia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.) The prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria. Springer US, New York, pp 1002–1021 Louis P, Flint HJ (2007) Development of a Semiquantitative degenerate Real-Time PCR-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl Environ Microbiol 73(6):2009–2012 Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA, Sogin ML, Morrison HG, Raffals L, Chang EB, Huffnagle GB, Schmidt TM, Cole JR, Tiedje JM (2013) A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1(1):8 Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186(7):2099–2106 Peng L, Li Z-R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625 Wang H-B, Wang P-Y, Wang X, Wan Y-L, Liu Y-C (2012) Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 57(12):3126–3135 Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267 Xiao X, Kim J, Sun Q, Kim D, Park C-S, Lu T-S, Park Y (2015) Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem 167:438–446 Sodagari HR, Farzaei MH, Bahramsoltani R, Abdolghaffari AH, Mahmoudi M, Rezaei N (2015) Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 9(6):807–820 Kahle K, Kraus M, Scheppach W, Ackermann M, Ridder F, Richling E (2006) Studies on apple and blueberry fruit constituents: do the polyphenols reach the colon after ingestion? Mol Nutr Food Res 50(4–5):418–423 Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC, McNabb WC, Ansell J (2012) Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases. Nutrition 28(3):324–330 Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM (1995) Colonic mucin synthesis is increased by sodium butyrate. Gut 36(1):93–99 Hatayama H, Iwashita J, Kuwajima A, Abe T (2007) The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 356(3):599–603 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071 Bereswill S, Munoz M, Fischer A, Plickert R, Haag LM, Otto B, Kuhl AA, Loddenkemper C, Gobel UB, Heimesaat MM (2010) Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 5(12):e15099 Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes. doi:10.1038/nutd.2011.24 Farzaei MH, Bahramsoltani R, Abdolghaffari AH, Sodagari HR, Esfahani SA, Rezaei N (2016) A mechanistic review on plant-derived natural compounds as dietary supplements for prevention of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 10(6):745–758 Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785 Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371(23):2237–2238 Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, Balletshofer B, Machicao F, Fritsche A, Haring HU (2008) Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168(15):1609–1616 Brunt EM, Wong VWS, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Prim 1:15080. doi:10.1038/nrdp.2015.80 Farzaei MH, Rahimi R, Farzaei F, Abdollahi M (2015) Traditional medicinal herbs for the management of diabetes and its complications: an evidence-based review. Int J Pharmacol 11(7):874–887 Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini M (2013) Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can J Physiol Pharmacol 91(6):387–396 Chambers BK, Camire ME (2003) Can cranberry supplementation benefit adults with type 2 diabetes? Diabetes Care 26(9):2695–2696 Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ (2011) Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 31(3):190–196 Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7(4):e35240. doi:10.1371/journal.pone.0035240 Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105(43):16767–16772 Murtaza N, Baboota RK, Jagtap S, Singh DP, Khare P, Sarma SM, Podili K, Alagesan S, Chandra TS, Bhutani KK, Boparai RK, Bishnoi M, Kondepudi KK (2014) Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. Br J Nutr 19:1–12 Frohnert BI, Jacobs DR Jr, Steinberger J, Moran A, Steffen LM, Sinaiko AR (2013) Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes 62(9):3163–3169 Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514(7521):181–186 Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS (2008) Splenda alters Gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J Toxicol Environ Health Part A 71(21):1415–1429 Palmnäs MSA, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, Hittel DS, Shearer J (2014) Low-dose aspartame Consumption differentially affects Gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One 9(10):e109841. doi:10.1371/journal.pone.0109841