Nhân bản và xác minh chức năng của một promoter đặc hiệu mô mỡ ở lợn

Dawei Zhang1, Liangcai Shen2, Wenjing Wu1, Keke Liu2, Jin Zhang1
1College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
2College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China

Tóm tắt

Tóm tắt Nền tảng Tích tụ mỡ là một đặc điểm kinh tế quan trọng ở lợn. Trong vài thập kỷ qua, nhiều gen điều chỉnh tích tụ mỡ ở lợn đã được xác định bằng công nghệ Omics và được xác minh qua nghiên cứu sinh học tế bào. Việc sử dụng lợn biến đổi gen để điều tra chức năng của các gen này trong cơ thể là cần thiết trước khi áp dụng vào chăn nuôi. Tuy nhiên, sự thiếu hụt các promoter đặc hiệu mô ở lợn đã cản trở việc tạo ra lợn biến đổi gen đặc hiệu mô mỡ.

Từ khóa

#lợn #chất béo #promoter #gen LGALS12 #sinh học tế bào

Tài liệu tham khảo

Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front Genet. 2018;9:360.

Nakajima O, Akiyama H, Teshima R. Study on recent status of development of genetically modified animals developed not for food purposes. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyujo hokoku=Bull Natl Institute Health Sci. 2012;1(130):50–57.

Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A. 2017;114(45):E9474–e9482.

Chen MY, Tu CF, Huang SY, Lin JH, Lee WC. Augmentation of Thermotolerance in primary skin fibroblasts from a transgenic pig overexpressing the porcine HSP70.2. Asian Australas J Anim Sci. 2005;18(1):107–112.

Jing-Fen LI, Hao YU, Yuan Y, Liu D. Construction of MSTN Knock-out porcine fetal fibroblast. Sci Agric Sin. 2009;42(8):2972–7.

Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, et al. A Huntingtin Knockin pig model recapitulates features of selective Neurodegeneration in Huntington's disease. Cell. 2018;173(4):989–1002.e1013.

Prather RS, Shen M, Dai Y. Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev. 2008;25:245–65.

Pontius J, Wagner L, Schuler G. 21. UniGene: a unified view of the Transcriptome. The NCBI handbook; 2003. p. 1.

Miner D, Rajkovic A. Identification of expressed sequence tags preferentially expressed in human placentas by in silico subtraction. Prenat Diagn. 2003;23(5):410–9.

Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R. Cancer gene discovery using digital differential display. Cancer Res. 2000;60(15):4037–43.

Yin G, Xu H, Liu J, Gao C, Sun J, Yan Y, et al. Screening and identification of soybean seed-specific genes by using integrated bioinformatics of digital differential display, microarray, and RNA-seq data. Gene. 2014;546(2):177–86.

Kato D, Suzuki Y, Haga S, So K, Yamauchi E, Nakano M, et al. Utilization of digital differential display to identify differentially expressed genes related to rumen development. Anim Sci J= Nihon chikusan Gakkaiho. 2016;87(4):584–90.

Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

Yang RY, Hsu DK, Yu L, Ni J, Liu FT. Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem. 2001;276(23):20252–60.

Hotta K, Funahashi T, Matsukawa Y, Takahashi M, Nishizawa H, Kishida K, et al. Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity. J Biol Chem. 2001;276(36):34089–97.

Yang RY, Yu L, Graham JL, Hsu DK, Lloyd KC, Havel PJ, et al. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. Proc Natl Acad Sci U S A. 2011;108(46):18696–701.

Wu W, Zhang D, Yin Y, Ji M, Xu K, Huang X, et al. Comprehensive transcriptomic view of the role of the LGALS12 gene in porcine subcutaneous and intramuscular adipocytes. BMC Genomics. 2019;20(1):509.

Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, et al. Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem. 2005;280(13):12867–75.

Matoba K, Lu Y, Zhang R, Chen ER, Sangwung P, Wang B, et al. Adipose KLF15 controls lipid handling to adapt to nutrient availability. Cell Rep. 2017;21(11):3129–40.

Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): what we currently know. Gene. 2017;611:27–37.

Xu Q, Li Y, Lin S, Wang Y, Zhu J, Lin Y. KLF4 inhibits the differentiation of goat intramuscular Preadipocytes through targeting C/EBPβ directly. Front Genet. 2021;12:663759.

Ji M, Xu K, Zhang D, Chen T, Shen L, Wu W, et al. Adipose-tissue-specific expression of pig ApoR protects mice from diet-induced obesity. J Agric Food Chem. 2020;68(7):2256–62.

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cerebr Blood Flow Metab. 2020;40(9):1769–77.

Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem. 2001;26(1):51–6.

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50(D1):D165–d173.

Xu YZ, Kanagaratham C, Jancik S, Radzioch D. Promoter deletion analysis using a dual-luciferase reporter system. Methods Mol Biol (Clifton, NJ). 2013;977:79–93.