Clinical examination factors that predict delayed recovery in individuals with concussion
Tóm tắt
Risk factors for prolonged recovery after concussion have been well researched, but specific objective clinical examination findings have not. This study examined whether clinical examination results could predict delayed recovery (DR) in individuals with concussion diagnosis. A secondary aim explored the influence of early examination on individual prognosis. The study was a retrospective, observational cohort design that included 163 individuals seen at a concussion clinic who were followed longitudinally until cleared for sports activity. Cognitive, visual, balance, vestibular, and cervical clinical testing and symptom assessment were performed at initial evaluation. DR was calculated by taking the median value associated with time to clearance for activity. Bivariate logistic regression analysis was calculated to determine odds ratios (and 95% confidence intervals) for the odds of DR with presence or absence of each clinical finding. Multivariate analyses were used to define the best predictors of DR. 80 of 163 individuals were considered delayed in their clearance to activity. Cognitive impairments (OR = 2.72; 95%CI = 1.40, 5.28), visual exam findings (OR = 2.98; 95%CI = 1.31, 6.80), and vestibular exam findings (OR = 4.28; 95%CI = 2.18, 8.43) all increased the odds of a DR. Multivariate modeling retained cognitive symptoms and clinical examination-vestibular testing as predictors of delayed recovery. Time to examination after injury was a mediator for DR. The clinical examination provides value in identifying individuals who are likely to exhibit a delayed clearance. In particular, vestibular impairments identified clinically at initial evaluation and cognitive symptoms were associated with increased odds of a DR to return to activity. Our data support that early implementation of a standardized clinical examination can help to identify individuals who may be more at risk of prolonged recovery from concussion.
Tài liệu tham khảo
Daneshvar DH, Nowinski CJ, McKee AC, Cantu RC. The epidemiology of sport-related concussion. Clin Sports Med. 2011;30(1):1–17.
Wasserman EB, Kerr ZY, Zuckerman SL, Covassin T. Epidemiology of sports-related concussions in National Collegiate Athletic Association athletes from 2009-2010 to 2013-2014: symptom prevalence, symptom resolution time, and return-to-play time. Am J Sports Med. 2016;44(1):226–33.
Williams RM, Puetz TW, Giza CC, Broglio SP. Concussion recovery time among high school and collegiate athletes: a systematic review and meta-analysis. Sports Med. 2015;45(6):893–903.
Thomas DG, Apps JN, Hoffmann RG, McCrea M, Hammeke T. Benefits of strict rest after acute concussion: a randomized controlled trial. Pediatrics. 2015;135(2):213–23.
Lau BC, Collins MW, Lovell MR. Sensitivity and specificity of subacute computerized neurocognitive testing and symptom evaluation in predicting outcomes after sports-related concussion. Am J Sports Med. 2011;39(8):1209–16.
Leddy JJ, Baker JG, Willer B. Active rehabilitation of concussion and post-concussion syndrome. Phys Med Rehabil Clin N Am. 2016 May 31;27(2):437–54.
Bock S, Grim R, Barron TF, et al. Factors associated with delayed recovery in athletes with concussion treated at a pediatric neurology concussion clinic. Childs Nerv Syst. 2015;31(11):2111–6.
Corbin-Berrigan LA, Gagnon I. Postconcussion symptoms as a marker of delayed recovery in children and youth who recently sustained a concussion: a brief report. Clin J Sport Med. 2017;27(3):325–7.
Ellis MJ, Cordingley D, Vis S, Reimer K, Leiter J, Russell K. Vestibulo-ocular dysfunction in pediatric sports-related concussion. J Neurosurg Pediatr. 2015;16(3):248–55.
Field M, Collins MW, Lovell MR, Maroon J. Does age play a role in recovery from sports-related concussion? A comparison of high school and collegiate athletes. J Pediatr. 2003;142(5):546–53.
Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2549–55.
Howell DR, Mannix RC, Quinn B, Taylor JA, Tan CO, Meehan WP 3rd. Physical activity level and symptom duration are not associated after concussion. Am J Sports Med. 2016;44(4):1040–6.
Lau BC, Kontos AP, Collins MW, Mucha A, Lovell MR. Which on-field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? Am J Sports Med. 2011;39(11):2311–8.
Makdissi M, Darby D, Maruff P, Ugoni A, Brukner P, McCrory PR. Natural history of concussion in sport: markers of severity and implications for management. Am J Sports Med. 2010;38(3):464–71.
Silverberg ND, Gardner AJ, Brubacher JR, Panenka WJ, Li JJ, Iverson GL. Systematic review of multivariable prognostic models for mild traumatic brain injury. J Neurotrauma. 2015;32(8):517–26.
Meares S, Shores EA, Taylor AJ, et al. The prospective course of post-concussion syndrome: the role of mild traumatic brain injury. Neuropsychology. 2011;25(4):454–65.
Miller JH, Gill C, Kuhn EN, et al. Predictors of delayed recovery following pediatric sports-related concussion: a case-control study. J Neurosurg Pediatr. 2016;17:491–6.
Waljas M, Iverson GL, Lange RT, et al. A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. J Neurotrauma. 2015;32(8):534–47.
Erlanger D, Saliba E, Barth J, Almquist J, Webright W, Freeman J. Monitoring resolution of Postconcussion symptoms in athletes: preliminary results of a web-based neuropsychological test protocol. J of Athl Train. 2001;36(3):280–7.
Iverson G. Predicting slow recovery from sport-related concussion: the new simple-complex distinction. Clin J Sport Med. 2007;17(1):31–7.
Pellman EJ, Lovell MR, Viano DC, Casson IR. Concussion in professional football: recovery of NFL and high school athletes assessed by computerized neuropsychological testing—part 12. Neurosurgery. 2006;58(2):263–74.
Matuszak JM, McVige J, McPherson J, Willer B, Leddy J. A practical concussion physical examination toolbox: evidence-based physical examination for concussion. Sports Health. 2016;8(3):260–9.
McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th international conference on concussion in sport, Zurich, November 2012. J Athl Train. 2013;48(4):554–75.
Zuckerbraun NS, Atabaki S, Collins MW, Thomas D, Gioia GA. Use of modified acute concussion evaluation tools in the emergency department. Pediatrics. 2014;133(4):635–42.
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573–7.
Macdermid JC, Walton DM, Avery S, et al. Measurement properties of the neck disability index: a systematic review. J Orthop Sports Phys. 2009;39(5):400–C12.
Jacobson GP, Newman CW. The development of the dizziness handicap inventory. Arch Otolaryngol–Head Neck Surg. 1990;116(4):424–7.
Lovell MR, Iverson GL, Collins MW, et al. Measurement of symptoms following sports-related concussion: reliability and normative data for the post-concussion scale. Appl Neuropsychol. 2006;13(3):166–74.
Pardini D, Stump J, Lovell M, Collins M, Moritz K, Fu F. The post concussion symptom scale (PCSS): a factor analysis [abstract]. Br J Sports Med. 2004;38(5):661–2.
Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: Wiley; 2000. p. 392.
Eisenberg MA, Meehan WP 3rd, Mannix R. Duration and course of post-concussive symptoms. Pediatrics. 2014;133(6):999–1006.
Brown NJ, Mannix RC, O’Brien MJ, Gostine D, Collins MW, Meehan WP. Effect of cognitive activity level on duration of post-concussion symptoms. Pediatrics. 2014;133(2):299–304.
Heitger MH, Jones RD, Macleod AD, Snell DL, Frampton CM, Anderson TJ. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132:2850–70.
Maruta J, Spielman LA, Yarusi BB, Wang Y, Silver JM, Ghajar J. Chronic post-concussion neurocognitive deficits. II. Relationship with persistent symptoms. Front Hum Neurosci. 2016;10(45):1–10.
Hoffer ME, Gottshall KR, Moore R, Balough BJ, Wester D. Characterizing and treating dizziness after mild head trauma. Otol Neurotol. 2004;25(2):135–8.
Zhou G, Brodsky JR. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions. Otolaryngol Head Neck Surg. 2015;152(6):1133–9.
Asken BM, McCrea MA, Clugston JR, Snyder AR, Houck ZM, Bauer RM. "playing through it": delayed reporting and removal from athletic activity after concussion predicts prolonged recovery. J Athl Train. 2016;51(4):329–35.