Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high‐resolution, spectral‐domain optical coherence tomography

Acta Ophthalmologica - Tập 88 Số 8 - Trang 842-849 - 2010
Hans‐Martin Helb1, Peter Charbel Issa1, Monika Fleckenstein1, Steffen Schmitz‐Valckenberg1, Hendrik P. N. Scholl1, Anat Loewenstein1, Nicole Eter1, Frank G. Holz1
1Department of Ophthalmology, University of Bonn, Germany

Tóm tắt

Acta Ophthalmol. 2010: 88: 842–849Abstract.Purpose:  To evaluate the clinical relevance of a new diagnostic modality, simultaneous confocal scanning laser ophthalmoscopy (cSLO) and high‐speed, high‐resolution, spectral‐domain optical coherence tomography (OCT), for the visualization of macular pathologies.Methods:  OCT images and simultaneous recording of fluorescein angiography, indocyanine green (ICG) angiography, infrared, and blue reflectance (‘red‐free’) or fundus autofluorecence (FAF) images were obtained with a novel imaging device (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany). An optically pumped solid‐state laser generated the excitation wavelength (488 nm) required for blue reflectance, FAF and fluorescein angiography images. For ICG angiography and infrared imaging, diode laser sources at 790 and 815 nm were used. For OCT, 40 000 A‐scans per second were acquired with 7 μm axial and 14 μm lateral optical resolution. The B‐scans covering a transversal range of 30° had a scan width up to 1.536 A‐scans with a digital lateral resolution of 5 μm/pixel, a scan depth of 1.8 mm with 3.5 μm/pixel digital axial resolution and a scan rate of up to 48 B‐scans/second. In addition, volume scans could be obtained at 15, 20 and 30° fields of view. An integrated eye tracking allowed for live averaging of cSLO images as well as OCT B‐scans.Results:  Early, neovascular and atrophic age‐related macular degeneration, macular telangiectasia, retinal arterial, branch vein occlusion and other pathologies were imaged, and cSLO and OCT frames correlated. Fluorescein and ICG angiographic phenomena recorded in cSLO images could be analysed accurately in corresponding OCT cross‐sections. Abnormal FAF signals were correlated to alterations at the outer retinal/retinal pigment epithelial cell layer in high‐resolution OCT scans. Three‐dimensional OCT enabled comprehensive retinal coverage. The imaging software tracked eye movements accurately. Averaging of live B‐scans enhanced image quality considerably.Conclusion:  The combined cSLO/OCT system allowed for simultaneous recordings of topographic and tomographic images with accurate correlation between the confocal angiograms, FAF images as well as other imaging modes with the OCT scans. The instrument thus provides simultaneous multi‐modal imaging of retinal pathologies and disease.

Từ khóa


Tài liệu tham khảo

10.1016/S0002-9394(14)70826-8

10.1007/s003470050130

10.1001/archopht.120.5.579

10.1167/iovs.04-0430

10.1136/bjo.2004.057794

10.1364/OPEX.12.002435

10.1111/j.1600-0420.2007.01041.x

10.1167/iovs.07-0636

10.1001/archopht.118.1.32

Delori FC, 1995, In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin charactersitstics, Invest Ophthalmol Vis Sci, 36, 718

Delori FC, 2001, Age‐related accumulation and spatial distribution of lipofuscin in RPE of normal subjects, Invest Ophthalmol Vis Sci, 42, 1855

10.1055/s-2008-1035342

10.1117/1.1629679

10.1364/OL.24.001221

10.1038/86589

10.1001/archopht.121.5.695

Drexler W, 2005, The shape of glaucoma, 75

10.1016/0042-6989(95)00100-E

10.1016/0030-4018(95)00119-S

10.1001/archopht.117.6.744

10.1016/S0161-6420(92)31981-5

10.1016/S0161-6420(13)31433-X

10.1117/1.429899

10.1001/archopht.1995.01100030081025

10.1016/S0161-6420(96)30512-5

10.1007/s003470170194

10.1016/S0002-9394(99)80095-6

10.1007/s004170050209

Holz FG, 2001, Fundus autofluorescence and development of geographic atrophy in age‐related macular degeneration, Invest Ophthalmol Vis Sci, 42, 1051

10.1016/j.ajo.2006.11.041

10.1016/S0161-6420(94)31303-0

10.1034/j.1600-0420.2002.800510.x

10.1097/00006982-200506000-00003

10.1364/OPEX.12.002156

10.1016/S0002-9394(00)00574-2

10.1016/S0002-9394(01)01015-7

10.1111/j.1600-0420.2006.00694.x

10.1161/01.CIR.24.1.82

10.1016/S0161-6420(95)31032-9

10.1016/0039-6257(78)90134-0

10.1136/bjo.79.5.407

Sánchez‐Tocino H, 2002, Retinal thickness study with optical coherence tomography in patients with diabetes, Invest Ophthalmol Vis Sci, 43, 1588

10.1016/S0002-9394(14)75752-6

10.1007/s00417-001-0413-3

10.1097/00055735-199504000-00014

10.1001/archopht.1995.01100050054031

10.1111/j.1600-0420.2007.00917.x

Spaide RF, 1999, Diseases of the retina and vitreous, 29

10.1016/S0161-6420(02)01756-6

10.1016/S0002-9394(01)01377-0

10.1001/archopht.1996.01100130361042

10.1016/0002-9394(71)91681-3

10.1364/OL.18.001864

Laser Institute of America, 1993, American national standard for the safe use of lasers

Tittl MK, 1999, Diseases of the retina and vitreous, 39

10.1364/AO.19.002991

10.1364/AO.26.001492

10.1167/iovs.05-1104

10.1016/j.ajo.2004.04.049

10.1016/j.ophtha.2005.05.023

Wolf S, 1994, Indocyanine green video angiography in patients with age‐related maculopathy‐related retinal pigment epithelial detachments, Ger J Ophthalmol, 3, 224

World Medical Association, 2000, Revising the Declaration of Helsinki, Bull Med Ethics, 158, 9

10.1097/00006982-199212030-00003

10.1001/archopht.1993.01090090015002