Climate‐related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010)

International Journal of Climatology - Tập 38 Số S1 - 2018
Tangtang Zhang1,2,3, Mekonnen Gebremichael1, Xianhong Meng2, Jun Wen4,2, Mudassar Iqbal2, Dongyu Jia2, Ye Yu2,3, Zhenchao Li2,3
1Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
2Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
3Pingliang Land Surface Process and Severe Weather Research Station, Chinese Academy of Science, Lanzhou, China
4College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Tóm tắt

ABSTRACTActual evapotranspiration (ETa) is an important component of the hydrologic cycle. In this study, ETa on the Tibetan Plateau (TP) is calculated using the advection‐aridity model (AA model) with data from 86 meteorological stations during the period from 1961 to 2010. Results show that the mean annual ETa over the TP was 543 mm and range from 147 to 687 mm, with higher values in the southern part and lower values in the northern part of the TP. During 1961–2010, annual and seasonal mean ETa show statistically increasing trend at most all stations. Annual ETa in area‐averaged over the TP changed +1.01 mm year−1. Among the four seasons, the changes were most pronounced in March, April, May (MAM) and June, July, August (JJA). ETa variation is significantly and positively correlated with a drought index, defined as the difference between precipitation (P) and potential evapotranspiration (ETp), i.e. P − ETp, showing that the ETa increases over the TP tend to be affected by an increasing soil water supply associated with global warming, such as the retreat of permafrost, increase in P, and decline of ETp.

Từ khóa


Tài liệu tham khảo

AllenRG PereiraLS RaesD SmithM.1998. Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56 FAO Rome 300 6541.

10.1029/2009GB003540

10.1002/wrcr.20247

10.1029/WR015i002p00443

Budyko MI, 1974, Climate and Life

10.1175/1525-7541(2004)005<0974:EOSCIE>2.0.CO;2

10.1175/JCLI-D-11-00669.1

10.1007/s10584-012-0479-4

10.1007/s10584-009-9579-1

10.1007/s00477-011-0525-1

10.1016/j.jhydrol.2014.06.006

Hobbins MT, 2008, Revisiting the parameterization of potential evaporation as a driver of long‐term water balance trends, Geophys. Res. Lett., 35, L12403, 10.1029/2008GL033840

10.1016/j.jhydrol.2005.07.003

10.1126/science.1183188

10.1038/nature09396

10.1016/0022-1694(90)90067-8

10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

10.1007/s11442-011-0866-1

10.1002/2016WR019340

10.1016/j.jhydrol.2011.10.024

10.1146/annurev-earth-040809-152456

10.2136/sssaj2005.0492

10.1126/science.1128845

10.1029/91WR02482

10.1098/rspa.1948.0037

10.1111/j.1749-8198.2008.00214.x

10.1016/j.earscirev.2010.02.004

10.1088/1748-9326/8/2/024012

10.5194/hessd-10-6629-2013

10.1002/hyp.8246

10.1175/2011JCLI3933.1

10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2

10.1002/hyp.9487

10.1016/j.jhydrol.2004.10.024

Xu Y, 2003, Climatic change over Qinghai and Xizang in 21st century, Plateau Meteorol., 22, 451

10.1016/j.jhydrol.2011.10.043

Yang H, 2008, Regional variability of the complementary relationship between actual and potential evapotranspiration, J. Tsinghua Univ., 48, 1413

10.1175/2010JCLI3848.1

10.1016/j.earscirev.2010.07.002

10.1007/s10584-011-0099-4

10.1002/hyp.9400

10.1038/nclimate1580

10.1007/s11442-013-1003-0

10.1002/joc.3807

10.1175/2007JCLI1714.1

Zhang Y, 2007, Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau, J. Geophys. Res. Atmos., 112, D12110, 10.1029/2006JD008161

10.1029/2009WR008800