Climate change in mountains: a review of elevation-dependent warming and its possible causes

Springer Science and Business Media LLC - Tập 114 Số 3-4 - Trang 527-547 - 2012
Imtiaz Rangwala1,2, James R. Miller3
1 NOAA Earth System Research Laboratory
2Rutgers University
3Department of Marine & Coastal Sciences, Rutgers University, New Brunswick, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227

Ames A (1998) A documentation of glacier tongue variations and lake development in the Cordillera Blanca, Peru. Zeitschrift für Gletscherkunde und Glazialgeologie 34:1–26

Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61

Arnell NW (2003) Effects of IPCC SRES emissions scenarios on river runoff: a global perspective. Hydrol Earth Syst Sci 7:619–641

Barry RG (2001) ‘Mountain Climate Change and Cryospheric Responses: A Review’, World Mountain Symposium 2001, World Mountain Forum

Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31

Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor Appl Climatol 53:231–243

Beniston M, Rebetez M, Giorgi F, Marinucci M (1994) An analysis of regional climate change in Switzerland. Theor Appl Climatol 49:135–159

Beniston M, Diaz H, Bradley R (1997) Climatic change at high elevation sites: an overview. Clim Chang 36:233–251

Bhutiyani M, Kale V, Pawar N (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Chang 85:159–177

Bhutiyani M, Kale V, Pawar N (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548

Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210

Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36:L17701

Ceppi P, Scherrer S, Fischer A, Appenzeller C (2010) Revisiting Swiss temperature trends 1959–2008. Int J Climatol

Chen B, Chao W, Liu X (2003) Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Clim Dyn 20:401–413

Chen Y, Aires F, Francis JA, Miller JR (2006a) Observed relationships between Arctic longwave cloud forcing and cloud parameters using a neural network. J Clim 19:4087–4104

Chen S, Liu Y, Thomas A (2006b) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Clim Chang 76:291–319

Clow DW (2010) Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim 23:2293–2306

Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473

Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064

Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. J Clim 8:606–623

Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Chang 36:253–279

Diaz H, Eischeid J (2007) Disappearing ‘alpine tundra’,Köppen climatic type in the western United States. Geophys Res Lett 34:L18707

Diaz HF, Graham NE (1996) Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383:152–155

Duan A, Wu G (2006) Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys Res Lett 33:L22704

Durre I, Wallace JM, Lettenmaier DP (2000) Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J Clim 13:2641–2651

Fan ZX, Bräuning A, Thomas A, Li JB, Cao KF (2010) Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int J Climatol

Gaffen DJ, Santer BD, Boyle JS, Christy JR, Graham NE, Ross RJ (2000) Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science 287:1242

Giorgi F, Hurrell J, Marinucci M, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296

Gutmann ED, Rasmussen RM, Liu C, Ikeda K, Gochis DJ, Clark MP, Dudhia J, Thompson G (2011) A Comparison of Statistical and Dynamical Downscaling of Winter Precipitation Over Complex Terrain. J Clim (In Press)

Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

Holden J, Rose R (2011) Temperature and surface lapse rate change: a study of the UK's longest upland instrumental record. Int J Climatol

Jungo P, Beniston M (2001) Changes in the anomalies of extreme temperature anomalies in the 20th century at Swiss climatological stations located at different latitudes and altitudes. Theor Appl Climatol 69:1–12

Kehrwald NM, Thompson L, Tandong Y, Mosley-Thompson E, Schotterer U, Alfimov V, Beer J, Eikenberg J, Davis M (2008) Mass loss on Himalayan glacier endangers water resources. Geophys Res Lett 35

Kothawale D, Munot A, Kumar KK (2010) Surface air temperature variability over India during 1901–2007, and its association with ENSO. Clim Res 42:89–104

Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

Lau W, Kim M, Kim K, Lee W (2010) Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett 5:025204

Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

Liu X, Yin ZY, Shao X, Qin N (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J Geophys Res 111

Liu X, Cheng Z, Yan L, Yin Z (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68:164–174

Liu S, Guo W, Xu J, Li J, Wei J, Yu P (2010) ‘The changing pattern of glaciers during last 40 years in Tibetan Plateau, China’, in AGU Fall Meeting, San Francisco, p. 0858

Lu A, Kang S, Li Z, Theakstone W (2010) Altitude effects of climatic variation on Tibetan Plateau and its vicinities. J Earth Sci 21:189–198

Merten EC, Hemstad NA, Eggert SL, Johnson LB, Kolka RK, Newman RM, Vondracek B (2010) Relations between fish abundances, summer temperatures, and forest harvest in a northern Minnesota stream system from 1997 to 2007. Ecol Freshwat Fish 19:63–73

Messerli B, Ives JD (1997) Mountains of the world: a global priority, Parthenon Publishing Group

Nijssen B, O’Donnell GM, Hamlet AF, Lettenmaier DP (2001) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50:143–175

Niu T, Chen L, Zhou Z (2004) The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv Atmos Sci 21:193–203

Nogués-Bravo D, Araújo MB, Errea M, Martinez-Rica J (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Chang 17:420–428

Overpeck J, Udall B (2010) Dry times ahead. Science 328:1642

Painter TH, Barrett AP, Landry CC, Neff JC, Cassidy MP, Lawrence CR, McBride KE, Farmer GL (2007) Impact of disturbed desert soils on duration of mountain snow cover. Geophys Res Lett 34:L12502

Pederson GT, Graumlich LJ, Fagre DB, Kipfer T, Muhlfeld CC (2010) A century of climate and ecosystem change in Western Montana: what do temperature trends portend? Clim Chang 98:133–154

Pepin N, Losleben M (2002) Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. Int J Climatol 22:311–329

Pepin N, Lundquist J (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:1–L14701

Pepin N, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. J Geophys Res 110:D03104

Philipona R, Dürr B, Ohmura A, Ruckstuhl C (2005) Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys Res Lett 32:L19809

Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97:321–327

Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

Rangwala I, Barsugli J, Cozzetto K, Neff J, Prairie J (2012) Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models. Clim Dyn. doi: 10.1007/s00382-011-1282-z

Rangwala I, Miller JR (2010) Twentieth century temperature trends in Colorado’s San Juan Mountains. Arct Antarct Alp Res 42:89–97

Rangwala I, Miller JR (2011) ‘Long-term Temperature Trends in the San Juan Mountains’. In: Blair R, Bracksieck G (eds) EASTERN SAN JUAN MOUNTAINS: Their Geology, Ecology and Human History, University Press of Colorado

Rangwala I, Miller J, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36:L06703

Rangwala I, Miller J, Russell G, Xu M (2010) Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim Dyn 34:859–872

Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Yu W, Miller K, Arsenault K, Grubišić V, Thompson G, Gutmann E (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24:3015–3048

Ray AJ, Barsugli JJ, Averyt KB (2008) The observed record of Colorado climate (Chapter 2), in Climate Change in Colorado, a report for the Colorado Water Conservation Board. University of Colorado Press, Boulder

Rikiishi K, Nakasato H (2006) Height dependence of the tendency for reduction in seasonal snow cover in the Himalaya and the Tibetan Plateau region, 1966–2001. Ann Glaciol 43:369–377

Ruckstuhl C, Philipona R, Morland J, Ohmura A (2007) Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J Geophys Res 112:D03302

Russell GL, Miller JR, Rind D (1995) A coupled atmosphere-ocean model for transient climate change studies. Atmosphere-Ocean 33:683–730

Saunders S, Montgomery CH, Easley T, Spencer T, Organization RMC, Council, N.R.D. (2008) Hotter and drier: the West’s changed climate, Rocky Mountain Climate Organization, p. 54

Seidel D, Free M (2003) Comparison of lower-tropospheric temperature climatologies and trends at low and high elevation radiosonde sites. Clim Chang 59:53–74

Serreze M, Walsh J, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel W, Morison J, Zhang T, Barry R (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207

Shrestha A, Wake C, Mayewski P, Dibb J (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2786

Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 235–336.

Twomey S (1974) Pollution and the planetary albedo. Atmos Environ (1967) 8:1251–1256

Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108

Vuille M, Bradley R (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885–3888

Vuille M, Bradley R, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59:75–99

Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: Past, present and future. Earth Sci Rev 89:79–96

Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35:L14702

Williams M, Losleben M, Caine N, Greenland D (1996) Changes in climate and hydrochemical responses in a high-elevation catchment in the Rocky Mountains, USA. Limnol Oceanogr 939–946

Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106:22114–22118

You Q, Kang S, Wu Y, Yan Y (2007) Climate change over the Yarlung Zangbo river basin during 1961–2005. J Geogr Sci 17:409–420

You Q, Kang S, Pepin N, Yan Y (2008) Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett 35:L04704

You Q, Kang S, Pepin N, Flügel W, Yan Y, Behrawan H, Huang J (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet Change