Climate change effects on fishes and fisheries: towards a cause‐and‐effect understanding

Journal of Fish Biology - Tập 77 Số 8 - Trang 1745-1779 - 2010
Hans‐Otto Pörtner1, Myron A. Peck2
1Integrative Ecophysiology, Alfred‐Wegener‐Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
2Center for Marine and Climate Research, Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany

Tóm tắt

Ongoing climate change is predicted to affect individual organisms during all life stages, thereby affecting populations of a species, communities and the functioning of ecosystems. These effects of climate change can be direct, through changing water temperatures and associated phenologies, the lengths and frequency of hypoxia events, through ongoing ocean acidification trends or through shifts in hydrodynamics and in sea level. In some cases, climate interactions with a species will also, or mostly, be indirect and mediated through direct effects on key prey species which change the composition and dynamic coupling of food webs. Thus, the implications of climate change for marine fish populations can be seen to result from phenomena at four interlinked levels of biological organization: (1) organismal‐level physiological changes will occur in response to changing environmental variables such as temperature, dissolved oxygen and ocean carbon dioxide levels. An integrated view of relevant effects, adaptation processes and tolerance limits is provided by the concept of oxygen and capacity‐limited thermal tolerance (OCLT). (2) Individual‐level behavioural changes may occur such as the avoidance of unfavourable conditions and, if possible, movement into suitable areas. (3) Population‐level changes may be observed via changes in the balance between rates of mortality, growth and reproduction. This includes changes in the retention or dispersion of early life stages by ocean currents, which lead to the establishment of new populations in new areas or abandonment of traditional habitats. (4) Ecosystem‐level changes in productivity and food web interactions will result from differing physiological responses by organisms at different levels of the food web. The shifts in biogeography and warming‐induced biodiversity will affect species productivity and may, thus, explain changes in fisheries economies. This paper tries to establish links between various levels of biological organization by means of addressing the effective physiological principles at the cellular, tissue and whole organism levels.

Từ khóa


Tài liệu tham khảo

10.1016/j.icesjms.2005.04.024

10.1577/1548-8659(1964)93[323:TTOTMP]2.0.CO;2

Ames W. E., 1978, Upper lethal water temperature levels for English sole Parophrys vetulus and rock sole Lepidopsetta bilineata subjected to gradual thermal increases., Journal of Northwest Fisheries Science, 52, 285

Angiletta M., 2009, Thermal Adaptation. A Theoretical and Empirical Synthesis., 10.1093/acprof:oso/9780198570875.001.1

10.1111/j.1095-8649.1994.tb01071.x

10.1111/j.1095-8649.2007.01346.x

10.3354/meps284269

10.1016/j.pocean.2004.02.018

10.1126/science.1071329

10.1016/j.ecolmodel.2005.01.030

10.1007/BF00005481

10.1139/cjfas-53-9-2093

10.1017/S0025315400013576

10.1016/1054-3139(95)80010-7

10.1016/S0399-1784(00)00133-X

10.1139/f60-057

10.1139/f52-016

Brett J. R., 1970, Marine Ecology, 515

10.1016/S1546-5098(08)60029-1

Brewer G. D., 1976, Thermal tolerance and resistance of the northern anchovy Engraulis mordax., Fisheries Bulletin, 74, 433

10.1007/s00300-006-0165-y

10.1038/421495a

10.1016/j.dsr2.2006.08.009

Bulger A. J., 1985, Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus., Physiological Zoology, 58, 197, 10.1086/physzool.58.2.30158567

10.1007/BF00016770

10.1016/j.jtherbio.2004.05.001

10.1111/j.1467-2979.2008.00315.x

10.1111/j.1095-8649.2006.01211.x

10.1093/icesjms/42.3.281

10.1577/1548-8659(1984)113<666:TSBJSB>2.0.CO;2

10.1023/A:1007447417546

10.1016/S0065-2881(08)60202-3

10.1111/j.1365-2419.2008.00482.x

Daewel U., Life history strategy and impacts of climate variability on early life stages of two marine fishes in the North Sea: an individual‐based modelling approach., Canadian Journal of Fisheries and Aquatic Sciences

10.1016/j.aquaculture.2009.06.034

10.1016/j.jtherbio.2004.02.001

10.1016/j.aquaculture.2006.04.037

10.1577/1548-8659(2001)130<0263:FTPOAC>2.0.CO;2

10.2134/jeq2001.302275x

10.1016/S0044-8486(97)00069-0

10.2307/1538144

10.2307/1538044

10.1016/j.icesjms.2005.05.015

10.1046/j.1365-2419.2003.00243.x

10.1139/f76-021

Ehrlich K. F., 1979, Thermal behavioral responses of the speckled sanddab, Citharichthys stigmaeus: laboratory and field investigations., Fishery Bulletin, 76, 867

10.1016/j.jtherbio.2009.02.005

10.1242/jeb.02260

10.1086/592057

10.1577/1548-8659(1987)116<856:CACTMO>2.0.CO;2

10.1016/0077-7579(92)90014-6

Fry F. E. J., 1971, Fish Physiology, 1

10.1016/S0044-8486(03)00164-9

10.1139/z72-107

10.1139/z77-154

10.1086/605982

10.1016/0077-7579(94)90040-X

10.2307/1441975

10.1126/science.172.3985.861

10.1086/physzool.45.1.30155921

10.1139/Z10-039

Hall L. W., 1982, Thermal responses of Atlantic silversides (Menidia menidia) acclimated to constant and asymmetric fluctuating temperatures., Archiv für Hydrobiologie, 94, 318

Hanson P. C., 1997, Fish Bioenergetics, 3.0.

10.1007/BF00001018

10.3354/meps214015

10.1111/j.0014-3820.2002.tb01378.x

10.1007/BF00005526

10.4319/lo.2010.55.4.1485

10.2960/J.v41.m634

Howells R. G., 1990, Lower temperature tolerance of snook Centropomus undecimalis., Northeast Gulf Science, 11, 155, 10.18785/negs.1102.08

10.1016/j.cbpa.2009.11.012

10.1111/j.1095-8649.1981.tb05847.x

10.1016/j.ecolmodel.2006.10.001

10.1139/z95-117

10.1007/s00360-010-0481-y

10.1577/1548-8659(2001)130<0236:LTTOAA>2.0.CO;2

10.1007/s00300-005-0730-9

10.1007/s10641-004-5353-4

10.1577/1548-8659(1965)94[409:TEOMTO]2.0.CO;2

10.1242/jeb.02268

10.1890/02-0780

10.3354/meps193143

10.1016/j.jtherbio.2009.07.002

10.1111/j.1095-8649.1981.tb03800.x

10.3354/meps06973

10.1111/j.1365-2486.2008.01814.x

10.1007/s002270100626

10.1007/s00227-002-0862-1

10.1016/j.jtherbio.2007.03.004

10.3354/meps08137

10.1073/pnas.0809996106

10.1577/1548-8659(1976)105<96:LAPTOT>2.0.CO;2

10.3354/meps06976

10.3354/meps251233

10.1007/s10641-006-0031-3

10.1126/science.1111322

10.1038/423398b

10.1007/s001140100216

10.1016/S1095-6433(02)00045-4

10.1016/j.dsr2.2006.02.015

10.3354/meps07768

10.1242/jeb.037523

10.1126/science.1163156

10.1126/science.1135471

10.1016/S0278-4343(01)00038-3

10.1086/499986

10.3354/cr00766

10.1086/655977

10.1139/f89-246

10.1590/S0101-81752001000500007

10.1016/S0306-4565(00)00024-3

10.1016/0077-7579(92)90018-A

10.1093/icesjms/fsp056

10.1016/j.icesjms.2005.05.007

Rothschild B. J., 1986, Dynamics of Marine Fish Populations.

10.1007/s10695-008-9293-3

10.2307/1444885

Shafland P. L., 1983, A lower lethal temperature for fingerling snook Centropomus undecimalis., Northeast Gulf Science, 6, 175, 10.18785/negs.0602.12

10.1577/1548-8659(1982)111<45:ESOTTA>2.0.CO;2

10.1111/j.0021-8790.2004.00810.x

Sinclair M., 1988, Marine Populations: An Essay on Population Regulation and Speciation.

Sogard S. M., 1997, Size‐selective mortality in the juvenile stage of teleost fishes: a review., Bulletin of Marine Science, 60, 1129

10.1126/science.156.3772.257

10.1006/jmsc.1996.0098

10.1111/j.1095-8649.1973.tb04459.x

10.1139/f07-052

10.3354/meps07407

10.3354/meps07367

10.1007/s10021-007-9066-3

10.1016/0306-4565(94)00024-D

10.1007/BF00001458

10.1006/jmsc.1999.0523

10.1111/j.1095-8649.1971.tb03684.x

Wallace R. K., 1977, Thermal acclimation, upper temperature tolerance and preferred temperature of juvenile yellowtail snappers Ocyurus chrysurus (Pisces: Lutjanidae)., Bulletin of Marine Science, 27, 292

10.1016/S0079-6611(02)00081-2

10.4319/lo.2008.53.4.1294

10.3354/meps003121

10.1007/BF01626114

10.3354/meps187289

10.1007/s00360-003-0342-z